Data-Based Distributionally Robust Stochastic Optimal Power Flow—Part II: Case Studies
dc.contributor.author
Guo, Yi
dc.contributor.author
Baker, Kyri
dc.contributor.author
Dall’Anese, Emiliano
dc.contributor.author
Hu, Zechun
dc.contributor.author
Summers, Tyler H.
dc.date.accessioned
2022-01-25T08:30:12Z
dc.date.available
2022-01-19T16:33:51Z
dc.date.available
2022-01-25T08:30:12Z
dc.date.issued
2019-03
dc.identifier.issn
0885-8950
dc.identifier.issn
1558-0679
dc.identifier.other
10.1109/TPWRS.2018.2878380
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/527014
dc.description.abstract
This is the second part of a two-part paper on data-based distributionally robust stochastic optimal power flow. The general problem formulation and methodology have been presented in Part I (Y. Guo, K. Baker, E. Dall'Anese, Z. Hu, and T.H. Summers, “Data-based distributionally robust stochastic optimal power flow-Part I: Methodologies,” IEEE Trans. Power Syst., 2018.). Here, we present extensive numerical experiments in both distribution and transmission networks to illustrate the effectiveness and flexibility of the proposed methodology for balancing efficiency, constraint violation risk, and out-of-sample performance. On the distribution side, the method mitigates overvoltages due to high photovoltaic penetration using local energy storage devices. On the transmission side, the method reduces N-1 security line flow constraint risks due to high wind penetration using reserve policies for controllable generators. In both cases, the data-based distributionally robust model-predictive control algorithm explicitly utilizes forecast error training datasets, which can be updated online. The numerical results illustrate inherent tradeoffs between the operational costs, risks of constraints violations, and out-of-sample performance, offering systematic techniques for system operators to balance these objectives. © 2018 IEEE
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Stochastic optimal power flow
en_US
dc.subject
data-driven optimization
en_US
dc.subject
multi-period distributionally robust optimization
en_US
dc.subject
distribution networks
en_US
dc.subject
transmission systems
en_US
dc.title
Data-Based Distributionally Robust Stochastic Optimal Power Flow—Part II: Case Studies
en_US
dc.type
Journal Article
dc.type
Journal Article
dc.date.published
2018-10-29
ethz.journal.title
IEEE Transactions on Power Systems
ethz.journal.volume
34
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
IEEE Trans. Power Syst.
ethz.pages.start
1493
en_US
ethz.pages.end
1503
en_US
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02632 - Inst. f. El. Energieübertragung u. Hoch. / Power Systems and High Voltage Lab.::09481 - Hug, Gabriela / Hug, Gabriela
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02632 - Inst. f. El. Energieübertragung u. Hoch. / Power Systems and High Voltage Lab.::09481 - Hug, Gabriela / Hug, Gabriela
en_US
ethz.identifier.orcidWorkCode
89612717
ethz.date.deposited
2022-01-19T16:33:57Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-01-25T08:30:32Z
ethz.rosetta.lastUpdated
2022-01-25T08:30:32Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Data-Based%20Distributionally%20Robust%20Stochastic%20Optimal%20Power%20Flow%E2%80%94Part%20II:%20Case%20Studies&rft.jtitle=IEEE%20Transactions%20on%20Power%20Systems&rft.date=2019-03&rft.volume=34&rft.issue=2&rft.spage=1493&rft.epage=1503&rft.issn=0885-8950&1558-0679&rft.au=Guo,%20Yi&Baker,%20Kyri&Dall%E2%80%99Anese,%20Emiliano&Hu,%20Zechun&Summers,%20Tyler%20H.&rft.genre=article&article&rft_id=info:doi/10.1109/TPWRS.2018.2878380&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [130488]