Stochastic Dynamic Programming for Wind Farm Power Maximization
dc.contributor.author
Guo, Yi
dc.contributor.author
Rotea, Mario
dc.contributor.author
Summers, Tyler
dc.date.accessioned
2022-02-10T14:01:46Z
dc.date.available
2022-01-19T16:41:12Z
dc.date.available
2022-02-10T14:01:46Z
dc.date.issued
2020
dc.identifier.isbn
978-1-5386-8266-1
en_US
dc.identifier.isbn
978-1-5386-8265-4
en_US
dc.identifier.isbn
978-1-5386-8267-8
en_US
dc.identifier.other
10.23919/ACC45564.2020.9148006
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/527023
dc.description.abstract
Wind plants can increase annual energy production with advanced control algorithms by coordinating the operating points of individual turbine controllers across the farm. It remains a challenge to achieve performance improvements in practice because of the difficulty of utilizing models that capture pertinent complex aerodynamic phenomena while remaining amenable to control design. We formulate a multistage stochastic optimal control problem for wind farm power maximization and show that it can be solved analytically via dynamic programming. In particular, our model incorporates state- and input-dependent multiplicative noise whose distributions capture stochastic wind fluctuations. The optimal control policies and value functions explicitly incorporate the moments of these distributions, establishing a connection between wind flow data and optimal feedback control. We illustrate the results with numerical experiments.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
Stochastic Dynamic Programming for Wind Farm Power Maximization
en_US
dc.type
Conference Paper
dc.type
Conference Paper
dc.date.published
2020-07-27
ethz.book.title
2020 American Control Conference (ACC)
en_US
ethz.pages.start
4824
en_US
ethz.pages.end
4829
en_US
ethz.event
2020 American Control Conference (ACC 2020) (virtual)
en_US
ethz.event.location
Denver, CO, USA
en_US
ethz.event.date
July 1-3, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02632 - Inst. f. El. Energieübertragung u. Hoch. / Power Systems and High Voltage Lab.::09481 - Hug, Gabriela / Hug, Gabriela
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02632 - Inst. f. El. Energieübertragung u. Hoch. / Power Systems and High Voltage Lab.::09481 - Hug, Gabriela / Hug, Gabriela
en_US
ethz.identifier.orcidWorkCode
89612710
ethz.date.deposited
2022-01-19T16:41:17Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-02-10T14:01:52Z
ethz.rosetta.lastUpdated
2022-02-10T14:01:52Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Stochastic%20Dynamic%20Programming%20for%20Wind%20Farm%20Power%20Maximization&rft.date=2020&rft.spage=4824&rft.epage=4829&rft.au=Guo,%20Yi&Rotea,%20Mario&Summers,%20Tyler&rft.isbn=978-1-5386-8266-1&978-1-5386-8265-4&978-1-5386-8267-8&rft.genre=proceeding&proceeding&rft_id=info:doi/10.23919/ACC45564.2020.9148006&rft.btitle=2020%20American%20Control%20Conference%20(ACC)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33483]