Ionophobicity of carbon sub-nanometer pores enables efficient desalination at high salinity
dc.contributor.author
Zhang, Yuan
dc.contributor.author
Prehal, Christian
dc.contributor.author
Jiang, Huili
dc.contributor.author
Liu, Yang
dc.contributor.author
Feng, Guang
dc.contributor.author
Presser, Volker
dc.date.accessioned
2022-04-25T13:47:16Z
dc.date.available
2022-01-24T06:13:40Z
dc.date.available
2022-04-25T13:47:16Z
dc.date.issued
2022-01-19
dc.identifier.issn
2666-3864
dc.identifier.issn
2211-1247
dc.identifier.other
10.1016/j.xcrp.2021.100689
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/527711
dc.identifier.doi
10.3929/ethz-b-000527711
dc.description.abstract
Electrochemical seawater desalination has drawn significant attention as an energy-efficient technique to address the global issue of water remediation. Microporous carbons, that is, carbons with pore sizes smaller than 2 nm, are commonly used for capacitive deionization. However, micropores are ineffective for capacitive deionization at high molar strength because of their inability to permselectively uptake ions. In our work, we combine experimental work with molecular dynamics simulation and reveal the ability of sub-nanometer pores (ultramicropores) to effectively desalinate aqueous media at seawater-like molar strength. This is done without any ion-exchange membrane. The desalination capacity in 600 mM reaches 12 mg/g, with a charge efficiency of 94% and high cycling stability over 200 cycles (97% of charge efficiency retention). Using molecular dynamic simulations and providing experimental data, our work makes it possible both to understand and to calculate desalination capacity and charge efficiency at high molar strength as a function of pore size.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Cell Press
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Ionophobicity of carbon sub-nanometer pores enables efficient desalination at high salinity
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-12-13
ethz.journal.title
Cell Reports
ethz.journal.volume
3
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Cell Rep
ethz.pages.start
100689
en_US
ethz.size
17 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2022-01-24T06:13:43Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-04-25T13:47:24Z
ethz.rosetta.lastUpdated
2023-02-07T00:56:49Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Ionophobicity%20of%20carbon%20sub-nanometer%20pores%20enables%20efficient%20desalination%20at%20high%20salinity&rft.jtitle=Cell%20Reports&rft.date=2022-01-19&rft.volume=3&rft.issue=1&rft.spage=100689&rft.issn=2666-3864&2211-1247&rft.au=Zhang,%20Yuan&Prehal,%20Christian&Jiang,%20Huili&Liu,%20Yang&Feng,%20Guang&rft.genre=article&rft_id=info:doi/10.1016/j.xcrp.2021.100689&
Files in this item
Publication type
-
Journal Article [135020]