Show simple item record

dc.contributor.author
Aksan, Emre
dc.contributor.author
Hilliges, Otmar
dc.contributor.editor
Li, Yang
dc.contributor.editor
Hilliges, Otmar
dc.date.accessioned
2022-02-10T09:32:42Z
dc.date.available
2022-01-28T09:37:09Z
dc.date.available
2022-02-10T09:32:42Z
dc.date.issued
2021
dc.identifier.isbn
978-3-030-82680-2
en_US
dc.identifier.isbn
978-3-030-82681-9
en_US
dc.identifier.issn
1571-5035
dc.identifier.other
10.1007/978-3-030-82681-9_13
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/529474
dc.description.abstract
Digital ink promises to combine the flexibility of pen and paper interaction and the versatility of digital devices. Computational models of digital ink often focus on recognition of the content by following discriminative techniques such as classification, albeit at the cost of ignoring or losing personalized style. In this chapter, we propose augmenting the digital ink framework via generative modeling to achieve a holistic understanding of the ink content. Our focus particularly lies in developing novel generative models to gain fine-grained control by preserving user style. To this end, we model the inking process and learn to create ink samples similar to users. We first present how digital handwriting can be disentangled into style and content to implement editable digital ink, enabling content synthesis and editing. Second, we address a more complex setup of free-form sketching and propose a novel approach for modeling stroke-based data efficiently. Generative ink promises novel functionalities, leading to compelling applications to enhance the inking experience for users in an interactive and collaborative manner.
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.title
Generative Ink: Data-Driven Computational Models for Digital Ink
en_US
dc.type
Book Chapter
dc.date.published
2021-11-05
ethz.book.title
Artificial Intelligence for Human Computer Interaction: A Modern Approach
en_US
ethz.journal.title
Human–Computer Interaction Series
ethz.pages.start
417
en_US
ethz.pages.end
461
en_US
ethz.publication.place
Cham
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02658 - Inst. Intelligente interaktive Systeme / Inst. Intelligent Interactive Systems::03979 - Hilliges, Otmar / Hilliges, Otmar
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02658 - Inst. Intelligente interaktive Systeme / Inst. Intelligent Interactive Systems::03979 - Hilliges, Otmar / Hilliges, Otmar
en_US
ethz.relation.isPartOf
handle/20.500.11850/531844
ethz.date.deposited
2022-01-28T09:37:15Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-02-10T09:32:51Z
ethz.rosetta.lastUpdated
2023-02-07T00:12:22Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Generative%20Ink:%20Data-Driven%20Computational%20Models%20for%20Digital%20Ink&rft.jtitle=Human%E2%80%93Computer%20Interaction%20Series&rft.date=2021&rft.spage=417&rft.epage=461&rft.issn=1571-5035&rft.au=Aksan,%20Emre&Hilliges,%20Otmar&rft.isbn=978-3-030-82680-2&978-3-030-82681-9&rft.genre=bookitem&rft_id=info:doi/10.1007/978-3-030-82681-9_13&rft.btitle=Artificial%20Intelligence%20for%20Human%20Computer%20Interaction:%20A%20Modern%20Approach
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record