Zur Kurzanzeige

dc.contributor.author
Bargheer, Till
dc.contributor.author
Beisert, Niklas
dc.contributor.author
Gromov, Nikolay
dc.date.accessioned
2018-11-08T08:25:39Z
dc.date.available
2017-06-10T05:20:58Z
dc.date.available
2018-11-08T08:25:39Z
dc.date.issued
2008-10
dc.identifier.issn
1367-2630
dc.identifier.other
10.1088/1367-2630/10/10/103023
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/53252
dc.identifier.doi
10.3929/ethz-b-000053252
dc.description.abstract
Highly spinning classical strings on \mathbb{R}\times S^{3} are described by the Landau–Lifshitz model or equivalently by the Heisenberg ferromagnet in the thermodynamic limit. The spectrum of this model can be given in terms of spectral curves. However, it is a priori not clear whether any given admissible spectral curve can actually be realized as a solution to the discrete Bethe equations, a property which can be referred to as stability. In order to study the issue of stability, we find and explore the general two-cut solution or elliptic curve. It turns out that the moduli space of this elliptic curve shows a surprisingly rich structure. We present the various cases with illustrations and thus gain some insight into the features of multi-cut solutions. It appears that all admissible spectral curves are indeed stable if the branch cuts are positioned in a suitable, non-trivial fashion.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Institute of Physics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.title
Quantum Stability for the Heisenberg Ferromagnet
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
dc.date.published
2008-10-31
ethz.journal.title
New Journal of Physics
ethz.journal.volume
10
en_US
ethz.journal.abbreviated
New j. phys.
ethz.pages.start
103023
en_US
ethz.size
75 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.nebis
001997538
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03896 - Beisert, Niklas / Beisert, Niklas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03896 - Beisert, Niklas / Beisert, Niklas
ethz.date.deposited
2017-06-10T05:23:14Z
ethz.source
ECIT
ethz.identifier.importid
imp59364f8f139c885166
ethz.ecitpid
pub:86258
ethz.eth
no
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-18T11:39:07Z
ethz.rosetta.lastUpdated
2018-11-08T08:26:04Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Quantum%20Stability%20for%20the%20Heisenberg%20Ferromagnet&rft.jtitle=New%20Journal%20of%20Physics&rft.date=2008-10&rft.volume=10&rft.spage=103023&rft.issn=1367-2630&rft.au=Bargheer,%20Till&Beisert,%20Niklas&Gromov,%20Nikolay&rft.genre=article&
 Suchen via SFX

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige