The refined quantum extremal surface prescription from the asymptotic equipartition property
dc.contributor.author
Wang, Jinzhao
dc.date.accessioned
2025-02-05T09:15:47Z
dc.date.available
2022-03-05T14:49:18Z
dc.date.available
2022-07-18T12:48:51Z
dc.date.available
2025-02-05T09:15:47Z
dc.date.issued
2022-02-16
dc.identifier.issn
2521-327X
dc.identifier.other
10.22331/q-2022-02-16-655
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/535465
dc.description.abstract
Information theoretic ideas have provided numerous insights in the progress of fundamental physics, especially in our pursuit of quantum gravity. In particular, the holographic entanglement entropy is a very useful tool in studying AdS/CFT, and its efficacy is manifested in the recent black hole page curve calculation. On the other hand, the one-shot information theoretic entropies, such as the smooth min/max-entropies, are less discussed in AdS/CFT. They are however more fundamental entropy measures from the quantum information perspective and should also play pivotal roles in holography. We combine the technical methods from both quantum information and quantum gravity to put this idea on firm grounds. In particular, we study the quantum extremal surface (QES) prescription that was recently revised to highlight the significance of one-shot entropies in characterizing the QES phase transition. Motivated by the asymptotic equipartition property (AEP), we derive the refined quantum extremal surface prescription for fixed-area states via a novel AEP replica trick, demonstrating the synergy between quantum information and quantum gravity. We further prove that, when restricted to pure bulk marginal states, such corrections do not occur for the higher Renyi entropies of a boundary subregion in fixed-area states, meaning they always have sharp QES transitions. Our path integral derivation suggests that the refinement applies beyond AdS/CFT, and we confirm it in a black hole toy model by showing that the Page curve, for a black hole in superposition of two radiation stages, receives a large correction that is consistent with the refined QES prescription.
en_US
dc.language.iso
en
en_US
dc.publisher
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
en_US
dc.title
The refined quantum extremal surface prescription from the asymptotic equipartition property
en_US
dc.type
Journal Article
ethz.journal.title
Quantum
ethz.journal.volume
6
en_US
ethz.pages.start
655
en_US
ethz.size
68 p.
en_US
ethz.identifier.wos
ethz.publication.place
Wien
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03781 - Renner, Renato / Renner, Renato
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03781 - Renner, Renato / Renner, Renato
ethz.relation.isNewVersionOf
20.500.11850/526538
ethz.date.deposited
2022-03-05T14:50:18Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-07-18T12:48:59Z
ethz.rosetta.lastUpdated
2023-02-07T04:41:45Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=The%20refined%20quantum%20extremal%20surface%20prescription%20from%20the%20asymptotic%20equipartition%20property&rft.jtitle=Quantum&rft.date=2022-02-16&rft.volume=6&rft.spage=655&rft.issn=2521-327X&rft.au=Wang,%20Jinzhao&rft.genre=article&rft_id=info:doi/10.22331/q-2022-02-16-655&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [133574]