Show simple item record

dc.contributor.author
Ossa, Laura Arbelaez
dc.contributor.author
Starke, Georg
dc.contributor.author
Lorenzini, Giorgia
dc.contributor.author
Vogt, Julia E.
dc.contributor.author
Shaw, David M.
dc.contributor.author
Elger, Bernice Simone
dc.date.accessioned
2022-03-21T20:25:24Z
dc.date.available
2022-03-05T14:49:33Z
dc.date.available
2022-03-21T20:25:24Z
dc.date.issued
2022-01-01
dc.identifier.issn
2055-2076
dc.identifier.issn
2055-2076
dc.identifier.other
10.1177/20552076221074488
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/535496
dc.identifier.doi
10.3929/ethz-b-000535496
dc.description.abstract
Using artificial intelligence to improve patient care is a cutting-edge methodology, but its implementation in clinical routine has been limited due to significant concerns about understanding its behavior. One major barrier is the explainability dilemma and how much explanation is required to use artificial intelligence safely in healthcare. A key issue is the lack of consensus on the definition of explainability by experts, regulators, and healthcare professionals, resulting in a wide variety of terminology and expectations. This paper aims to fill the gap by defining minimal explainability standards to serve the views and needs of essential stakeholders in healthcare. In that sense, we propose to define minimal explainability criteria that can support doctors' understanding, meet patients' needs, and fulfill legal requirements. Therefore, explainability need not to be exhaustive but sufficient for doctors and patients to comprehend the artificial intelligence models' clinical implications and be integrated safely into clinical practice. Thus, minimally acceptable standards for explainability are context-dependent and should respond to the specific need and potential risks of each clinical scenario for a responsible and ethical implementation of artificial intelligence.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
SAGE
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Explainability
en_US
dc.subject
explainable AI
en_US
dc.subject
digital health
en_US
dc.subject
human-center AI
en_US
dc.subject
medicine
en_US
dc.title
Re-focusing explainability in medicine
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-02-11
ethz.journal.title
Digital Health
ethz.journal.volume
8
en_US
ethz.pages.start
1
en_US
ethz.pages.end
9
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Thousand Oaks, CA
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09670 - Vogt, Julia / Vogt, Julia
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09670 - Vogt, Julia / Vogt, Julia
ethz.date.deposited
2022-03-05T14:50:18Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-03-21T20:25:46Z
ethz.rosetta.lastUpdated
2023-02-07T00:26:19Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Re-focusing%20explainability%20in%20medicine&rft.jtitle=Digital%20Health&rft.date=2022-01-01&rft.volume=8&rft.spage=1&rft.epage=9&rft.issn=2055-2076&2055-2076&rft.au=Ossa,%20Laura%20Arbelaez&Starke,%20Georg&Lorenzini,%20Giorgia&Vogt,%20Julia%20E.&Shaw,%20David%20M.&rft.genre=article&rft_id=info:doi/10.1177/20552076221074488&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record