MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square
dc.contributor.author
Pan, Yue
dc.contributor.author
Xiao, Pengchuan
dc.contributor.author
He, Yujie
dc.contributor.author
Shao, Zhenlei
dc.contributor.author
Li, Zesong
dc.date.accessioned
2022-03-14T08:14:57Z
dc.date.available
2022-03-08T14:47:14Z
dc.date.available
2022-03-14T08:14:57Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7281-9077-8
en_US
dc.identifier.isbn
978-1-7281-9078-5
en_US
dc.identifier.other
10.1109/icra48506.2021.9561364
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/536149
dc.description.abstract
The rapid development of autonomous driving and mobile mapping calls for off-the-shelf LiDAR SLAM solutions that are adaptive to LiDARs of different specifications on various complex scenarios. To this end, we propose MULLS, an efficient, low-drift, and versatile 3D LiDAR SLAM system. For the front-end, roughly classified feature points (ground, facade, pillar, beam, etc.) are extracted from each frame using dual-threshold ground filtering and principal components analysis. Then the registration between the current frame and the local submap is accomplished efficiently by the proposed multi-metric linear least square iterative closest point algorithm. Point-to-point (plane, line) error metrics within each point class are jointly optimized with a linear approximation to estimate the ego-motion. Static feature points of the registered frame are appended into the local map to keep it updated. For the back-end, hierarchical pose graph optimization is conducted among regularly stored history submaps to reduce the drift resulting from dead reckoning. Extensive experiments are carried out on three datasets with more than 100,000 frames collected by seven types of LiDAR on various outdoor and indoor scenarios. On the KITTI benchmark, MULLS ranks among the top LiDAR-only SLAM systems with real-time performance.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square
en_US
dc.type
Conference Paper
dc.date.published
2021-10-18
ethz.book.title
2021 IEEE International Conference on Robotics and Automation (ICRA)
en_US
ethz.pages.start
11633
en_US
ethz.pages.end
11640
en_US
ethz.event
2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
en_US
ethz.event.location
Xi'an, China
en_US
ethz.event.date
May 30 - June 5, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2022-03-08T14:47:20Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-03-14T08:15:03Z
ethz.rosetta.lastUpdated
2023-02-07T00:21:59Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=MULLS:%20Versatile%20LiDAR%20SLAM%20via%20Multi-metric%20Linear%20Least%20Square&rft.date=2021&rft.spage=11633&rft.epage=11640&rft.au=Pan,%20Yue&Xiao,%20Pengchuan&He,%20Yujie&Shao,%20Zhenlei&Li,%20Zesong&rft.isbn=978-1-7281-9077-8&978-1-7281-9078-5&rft.genre=proceeding&rft_id=info:doi/10.1109/icra48506.2021.9561364&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35280]