Show simple item record

dc.contributor.author
Jokic, Stefan
dc.contributor.author
Cleres, David Moritz
dc.contributor.author
Rassouli, Frank
dc.contributor.author
Steurer-Stey, Claudia
dc.contributor.author
Puhan, Milo A.
dc.contributor.author
Brutsche, Martin
dc.contributor.author
Fleisch, Elgar
dc.contributor.author
Barata, Filipe
dc.date.accessioned
2022-07-19T07:34:07Z
dc.date.available
2022-03-17T08:34:29Z
dc.date.available
2022-03-17T09:30:22Z
dc.date.available
2022-05-05T12:13:27Z
dc.date.available
2022-06-02T07:28:13Z
dc.date.available
2022-07-19T07:34:07Z
dc.date.issued
2022-06
dc.identifier.issn
2168-2194
dc.identifier.issn
2168-2208
dc.identifier.other
10.1109/jbhi.2022.3152944
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/537595
dc.identifier.doi
10.3929/ethz-b-000537595
dc.description.abstract
Cough, a symptom associated with many prevalent respiratory diseases, can serve as a potential biomarker for diagnosis and disease progression. Consequently, the development of cough monitoring systems and, in particular, automatic cough detection algorithms have been studied since the early 2000s. Recently, there has been an increased focus on the efficiency of such algorithms, as implementation on consumer-centric devices such as smartphones would provide a scalable and affordable solution for monitoring cough with contact-free sensors. Current algorithms, however, are incapable of discerning between coughs of different individuals and, thus, cannot function reliably in situations where potentially multiple individuals have to be monitored in shared environments. Therefore, we propose a weakly supervised metric learning approach for cougher recognition based on smartphone audio recordings of coughs. Our approach involves a triplet network architecture, which employs convolutional neural networks (CNNs). The CNNs of the triplet network learn an embedding function, which maps Mel spectrograms of cough recordings to an embedding space where they are more easily distinguishable. Using audio recordings of nocturnal coughs from asthmatic patients captured with a smartphone, our approach achieved a mean accuracy of 88% (10% SD) on two-way identification tests with 12 enrollment samples and accuracy of 80% and an equal error rate (EER) of 20% on verification tests. Furthermore, our approach outperformed human raters with regard to verification tests on average by 8% in accuracy, 4% in false acceptance rate (FAR), and 12% in false rejection rate (FRR). Our code and models are publicly available.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
TripletCough: Cougher Identification and Verification from Contact-Free Smartphone-Based Audio Recordings Using Metric Learning
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-02-23
ethz.journal.title
IEEE Journal of Biomedical and Health Informatics
ethz.journal.volume
26
en_US
ethz.journal.issue
6
en_US
ethz.pages.start
2746
en_US
ethz.pages.end
2757
en_US
ethz.size
12 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.pubmed
35196248
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03681 - Fleisch, Elgar / Fleisch, Elgar
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03681 - Fleisch, Elgar / Fleisch, Elgar
en_US
ethz.date.deposited
2022-03-17T08:34:48Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-07-19T07:34:20Z
ethz.rosetta.lastUpdated
2025-02-14T02:35:43Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=TripletCough:%20Cougher%20Identification%20and%20Verification%20from%20Contact-Free%20Smartphone-Based%20Audio%20Recordings%20Using%20Metric%20Learning&rft.jtitle=IEEE%20Journal%20of%20Biomedical%20and%20Health%20Informatics&rft.date=2022-06&rft.volume=26&rft.issue=6&rft.spage=2746&rft.epage=2757&rft.issn=2168-2194&2168-2208&rft.au=Jokic,%20Stefan&Cleres,%20David%20Moritz&Rassouli,%20Frank&Steurer-Stey,%20Claudia&Puhan,%20Milo%20A.&rft.genre=article&rft_id=info:doi/10.1109/jbhi.2022.3152944&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record