Show simple item record

dc.contributor.author
Han, Erxun
dc.contributor.author
Fang, Wei
dc.contributor.author
Stamatakis, Michail
dc.contributor.author
Richardson, Jeremy
dc.contributor.author
Chen, Ji
dc.date.accessioned
2022-05-11T09:20:47Z
dc.date.available
2022-04-06T06:41:12Z
dc.date.available
2022-04-06T07:03:54Z
dc.date.available
2022-04-07T06:38:48Z
dc.date.available
2022-05-11T09:20:47Z
dc.date.issued
2022-04-14
dc.identifier.issn
1948-7185
dc.identifier.other
10.1021/acs.jpclett.2c00520
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/541145
dc.identifier.doi
10.3929/ethz-b-000541145
dc.description.abstract
It is commonly believed that it is unfavorable for adsorbed H atoms on carbonaceous surfaces to form H2 without the help of incident H atoms. Using ring-polymer instanton theory to describe multidimensional tunnelling effects, combined with ab initio electronic structure calculations, we find that these quantum-mechanical simulations reveal a qualitatively different picture. Recombination of adsorbed H atoms, which was believed to be irrelevant at low temperature due to high barriers, is enabled by deep tunnelling, with reaction rates enhanced by tens of orders of magnitude. Furthermore, we identify a new path for H recombination that proceeds via multidimensional tunnelling but would have been predicted to be unfeasible by a simple one-dimensional description of the reaction. The results suggest that hydrogen molecule formation at low temperatures are rather fast processes that should not be ignored in experimental settings and natural environments with graphene, graphite, and other planar carbon segments.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Quantum Tunnelling Driven H2 Formation on Graphene
en_US
dc.title.alternative
Quantum tunnelling driven H2 formation on carbonaceous surfaces
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2022-04-01
ethz.journal.title
The Journal of Physical Chemistry Letters
ethz.journal.volume
13
en_US
ethz.journal.issue
14
en_US
ethz.journal.abbreviated
J. Phys. Chem. Lett.
ethz.pages.start
3173
en_US
ethz.pages.end
3181
en_US
ethz.size
23 p. submitted version
en_US
ethz.version.deposit
submittedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02543 - Inst. f. Molekulare Physikalische Wiss. / Institute of Molecular Physical Science::09602 - Richardson, Jeremy / Richardson, Jeremy
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02543 - Inst. f. Molekulare Physikalische Wiss. / Institute of Molecular Physical Science::09602 - Richardson, Jeremy / Richardson, Jeremy
en_US
ethz.date.deposited
2022-04-06T06:41:19Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-04-06T07:04:02Z
ethz.rosetta.lastUpdated
2024-02-02T16:52:31Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Quantum%20Tunnelling%20Driven%20H2%20Formation%20on%20Graphene&rft.jtitle=The%20Journal%20of%20Physical%20Chemistry%20Letters&rft.date=2022-04-14&rft.volume=13&rft.issue=14&rft.spage=3173&rft.epage=3181&rft.issn=1948-7185&rft.au=Han,%20Erxun&Fang,%20Wei&Stamatakis,%20Michail&Richardson,%20Jeremy&Chen,%20Ji&rft.genre=article&rft_id=info:doi/10.1021/acs.jpclett.2c00520&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record