A computationally tractable birth-death model that combines phylogenetic and epidemiological data
dc.contributor.author
Zarebski, Alexander Eugene
dc.contributor.author
du Plessis, Louis
dc.contributor.author
Parag, Kris Varun
dc.contributor.author
Pybus, Oliver George
dc.date.accessioned
2022-05-04T10:49:44Z
dc.date.available
2022-04-07T15:49:29Z
dc.date.available
2022-05-04T10:49:44Z
dc.date.issued
2022-02-11
dc.identifier.issn
1553-734X
dc.identifier.issn
1553-7358
dc.identifier.other
10.1371/journal.pcbi.1009805
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/541572
dc.identifier.doi
10.3929/ethz-b-000541572
dc.description.abstract
Inferring the dynamics of pathogen transmission during an outbreak is an important problem in infectious disease epidemiology. In mathematical epidemiology, estimates are often informed by time series of confirmed cases, while in phylodynamics genetic sequences of the pathogen, sampled through time, are the primary data source. Each type of data provides different, and potentially complementary, insight. Recent studies have recognised that combining data sources can improve estimates of the transmission rate and the number of infected individuals. However, inference methods are typically highly specialised and field-specific and are either computationally prohibitive or require intensive simulation, limiting their real-time utility. We present a novel birth-death phylogenetic model and derive a tractable analytic approximation of its likelihood, the computational complexity of which is linear in the size of the dataset. This approach combines epidemiological and phylodynamic data to produce estimates of key parameters of transmission dynamics and the unobserved prevalence. Using simulated data, we show (a) that the approximation agrees well with existing methods, (b) validate the claim of linear complexity and (c) explore robustness to model misspecification. This approximation facilitates inference on large datasets, which is increasingly important as large genomic sequence datasets become commonplace.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
PLOS
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
A computationally tractable birth-death model that combines phylogenetic and epidemiological data
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
PLoS Computational Biology
ethz.journal.volume
18
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
PLOS comput. biol.
ethz.pages.start
e1009805
en_US
ethz.size
22 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.publication.place
San Francisco, CA
en_US
ethz.publication.status
published
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::09490 - Stadler, Tanja / Stadler, Tanja
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::09490 - Stadler, Tanja / Stadler, Tanja
en_US
ethz.date.deposited
2022-04-07T15:49:36Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-05-04T10:49:55Z
ethz.rosetta.lastUpdated
2024-02-02T16:47:39Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20computationally%20tractable%20birth-death%20model%20that%20combines%20phylogenetic%20and%20epidemiological%20data&rft.jtitle=PLoS%20Computational%20Biology&rft.date=2022-02-11&rft.volume=18&rft.issue=2&rft.spage=e1009805&rft.issn=1553-734X&1553-7358&rft.au=Zarebski,%20Alexander%20Eugene&du%20Plessis,%20Louis&Parag,%20Kris%20Varun&Pybus,%20Oliver%20George&rft.genre=article&rft_id=info:doi/10.1371/journal.pcbi.1009805&
Files in this item
Publication type
-
Journal Article [130513]