Detection of Differences in Longitudinal Cartilage Thickness Loss Using a Deep-Learning Automated Segmentation Algorithm: Data From the Foundation for the National Institutes of Health Biomarkers Study of the Osteoarthritis Initiative
dc.contributor.author
Eckstein, Felix
dc.contributor.author
Chaudhari, Akshay S.
dc.contributor.author
Fuerst, David
dc.contributor.author
Gaisberger, Martin
dc.contributor.author
Kemnitz, Jana
dc.contributor.author
Baumgartner, Christian F.
dc.contributor.author
Konukoglu, Ender
dc.contributor.author
Hunter, David J.
dc.contributor.author
Wirth, Wolfgang
dc.date.accessioned
2022-06-20T15:02:53Z
dc.date.available
2022-04-10T05:42:02Z
dc.date.available
2022-06-20T15:02:53Z
dc.date.issued
2022-06
dc.identifier.other
10.1002/acr.24539
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/541786
dc.identifier.doi
10.3929/ethz-b-000541786
dc.description.abstract
Objective To study the longitudinal performance of fully automated cartilage segmentation in knees with radiographic osteoarthritis (OA), we evaluated the sensitivity to change in progressor knees from the Foundation for the National Institutes of Health OA Biomarkers Consortium between the automated and previously reported manual expert segmentation, and we determined whether differences in progression rates between predefined cohorts can be detected by the fully automated approach. Methods The OA Initiative Biomarker Consortium was a nested case-control study. Progressor knees had both medial tibiofemoral radiographic joint space width loss (>= 0.7 mm) and a persistent increase in Western Ontario and McMaster Universities Osteoarthritis Index pain scores (>= 9 on a 0-100 scale) after 2 years from baseline (n = 194), whereas non-progressor knees did not have either of both (n = 200). Deep-learning automated algorithms trained on radiographic OA knees or knees of a healthy reference cohort (HRC) were used to automatically segment medial femorotibial compartment (MFTC) and lateral femorotibial cartilage on baseline and 2-year follow-up magnetic resonance imaging. Findings were compared with previously published manual expert segmentation. Results The mean +/- SD MFTC cartilage loss in the progressor cohort was -181 +/- 245 mu m by manual segmentation (standardized response mean [SRM] -0.74), -144 +/- 200 mu m by the radiographic OA-based model (SRM -0.72), and -69 +/- 231 mu m by HRC-based model segmentation (SRM -0.30). Cohen's d for rates of progression between progressor versus the non-progressor cohort was -0.84 (P < 0.001) for manual, -0.68 (P < 0.001) for the automated radiographic OA model, and -0.14 (P = 0.18) for automated HRC model segmentation. Conclusion A fully automated deep-learning segmentation approach not only displays similar sensitivity to change of longitudinal cartilage thickness loss in knee OA as did manual expert segmentation but also effectively differentiates longitudinal rates of loss of cartilage thickness between cohorts with different progression profiles.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Detection of Differences in Longitudinal Cartilage Thickness Loss Using a Deep-Learning Automated Segmentation Algorithm: Data From the Foundation for the National Institutes of Health Biomarkers Study of the Osteoarthritis Initiative
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-12-18
ethz.journal.title
Arthritis Care & Research
ethz.journal.volume
74
en_US
ethz.journal.issue
6
en_US
ethz.pages.start
929
en_US
ethz.pages.end
936
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Hoboken, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09579 - Konukoglu, Ender / Konukoglu, Ender
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09579 - Konukoglu, Ender / Konukoglu, Ender
ethz.date.deposited
2022-04-10T05:42:15Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-06-20T15:03:00Z
ethz.rosetta.lastUpdated
2023-02-07T03:38:17Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Detection%20of%20Differences%20in%20Longitudinal%20Cartilage%20Thickness%20Loss%20Using%20a%20Deep-Learning%20Automated%20Segmentation%20Algorithm:%20Data%20From%20the%2&rft.jtitle=Arthritis%20Care%20&%20Research&rft.date=2022-06&rft.volume=74&rft.issue=6&rft.spage=929&rft.epage=936&rft.au=Eckstein,%20Felix&Chaudhari,%20Akshay%20S.&Fuerst,%20David&Gaisberger,%20Martin&Kemnitz,%20Jana&rft.genre=article&rft_id=info:doi/10.1002/acr.24539&
Files in this item
Publication type
-
Journal Article [132337]