Metadata only
Date
2022-02-01Type
- Journal Article
Abstract
This paper extends the definition of Rabinowitz Floer homology to non-compact hypersurfaces. We present a general framework for the construction of Rabinowitz Floer homology in the non-compact setting under suitable compactness assumptions on the periodic orbits and the moduli spaces of Floer trajectories. We introduce a class of hypersurfaces arising as the level sets of specific Hamiltonians: strongly tentacular Hamiltonians for which the compactness conditions are satisfied, cf. [21], thus enabling us to define the Rabinowitz Floer homology for this class. Rabinowitz Floer homology in turn serves as a tool to address the Weinstein conjecture and establish existence of closed characteristics for non-compact contact manifolds. Show more
Publication status
publishedExternal links
Journal / series
International Mathematics Research NoticesVolume
Pages / Article No.
Publisher
Oxford University PressMore
Show all metadata