Show simple item record

dc.contributor.author
Wang, Enci
dc.contributor.author
Lilly, Simon
dc.date.accessioned
2022-04-25T12:15:18Z
dc.date.available
2022-04-24T03:00:59Z
dc.date.available
2022-04-25T12:15:18Z
dc.date.issued
2022-04-10
dc.identifier.issn
0004-637X
dc.identifier.issn
2041-8213
dc.identifier.other
10.3847/1538-4357/ac5e31
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/543480
dc.identifier.doi
10.3929/ethz-b-000543480
dc.description.abstract
Simulations indicate that the inflow of gas of star-forming galaxies is almost coplanar and corotating with the gas disk, and that the outflow of gas driven by stellar winds and/or supernova explosions is preferentially perpendicular to the disk. This indicates that the galactic gas disk can be treated as a modified accretion disk. In this work, we focus on the metal enhancement in galactic disks in this scenario of gas accretion. Assuming that the star formation rate surface density (sigma(SFR)) is of exponential form, we obtain the analytic solution of gas-phase metallicity with only three free parameters: the scale length of sigma(SFR) (h (R)), the metallicity of the inflowing gas, and the mass-loading factor defined as the wind-driven outflow rate surface density per sigma(SFR). According to this simple model, the negative gradient of gas-phase metallicity is a natural consequence of the radial inflow of cold gas that is continuously enriched by in situ star formation as it moves toward the disk center. We fit the model to the observed metallicity profiles for six nearby galaxies chosen to have well-measured metallicity profiles extending to very large radii. Our model can well characterize the overall features of the observed metallicity profiles. The observed profiles usually show a floor at the outer regions of the disk, corresponding to the metallicity of inflow gas. Furthermore, we find the h (R) of sigma(SFR) inferred from these fits agree well with independent estimates from sigma(SFR) profiles, supporting the basic model.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IOP Publishing
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Gas-phase Metallicity Profiles of Star-forming Galaxies in the Modified Accretion Disk Framework
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-04-15
ethz.journal.title
The Astrophysical Journal
ethz.journal.volume
929
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Astrophys. J.
ethz.pages.start
95
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Bristol
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::03613 - Lilly, Simon (emeritus) / Lilly, Simon (emeritus)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::03613 - Lilly, Simon (emeritus) / Lilly, Simon (emeritus)
ethz.date.deposited
2022-04-24T03:01:52Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-04-25T12:15:27Z
ethz.rosetta.lastUpdated
2025-02-14T02:09:39Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Gas-phase%20Metallicity%20Profiles%20of%20Star-forming%20Galaxies%20in%20the%20Modified%20Accretion%20Disk%20Framework&rft.jtitle=The%20Astrophysical%20Journal&rft.date=2022-04-10&rft.volume=929&rft.issue=1&rft.spage=95&rft.issn=0004-637X&2041-8213&rft.au=Wang,%20Enci&Lilly,%20Simon&rft.genre=article&rft_id=info:doi/10.3847/1538-4357/ac5e31&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record