Tensor rank bounds for point singularities in ℝ3
dc.contributor.author
Marcati, Carlo
dc.contributor.author
Rakhuba, Maxim
dc.contributor.author
Schwab, Christoph
dc.date.accessioned
2022-04-26T09:22:57Z
dc.date.available
2022-04-26T05:07:13Z
dc.date.available
2022-04-26T09:22:57Z
dc.date.issued
2022-04-14
dc.identifier.issn
1019-7168
dc.identifier.issn
1572-9044
dc.identifier.other
10.1007/s10444-022-09925-7
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/543770
dc.identifier.doi
10.3929/ethz-b-000543770
dc.description.abstract
We analyze rates of approximation by quantized, tensor-structured representations of functions with isolated point singularities in Double-struck capital R-3. We consider functions in countably normed Sobolev spaces with radial weights and analytic- or Gevrey-type control of weighted semi-norms. Several classes of boundary value and eigenvalue problems from science and engineering are discussed whose solutions belong to the countably normed spaces. It is shown that quantized, tensor-structured approximations of functions in these classes exhibit tensor ranks bounded polylogarithmically with respect to the accuracy epsilon is an element of (0,1) in the Sobolev space H-1. We prove exponential convergence rates of three specific types of quantized tensor decompositions: quantized tensor train (QTT), transposed QTT and Tucker QTT. In addition, the bounds for the patchwise decompositions are uniform with respect to the position of the point singularity. An auxiliary result of independent interest is the proof of exponential convergence of hp-finite element approximations for Gevrey-regular functions with point singularities in the unit cube Q = (0,1)(3). Numerical examples of function approximations and of Schrodinger-type eigenvalue problems illustrate the theoretical results.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Quantized tensor train
en_US
dc.subject
Tensor networks
en_US
dc.subject
Low-rank approximation
en_US
dc.subject
Exponential convergence
en_US
dc.subject
Schrödinger equation
en_US
dc.title
Tensor rank bounds for point singularities in ℝ3
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Advances in Computational Mathematics
ethz.journal.volume
48
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Adv Comput Math
ethz.pages.start
18
en_US
ethz.size
57 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Dordrecht
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
ethz.date.deposited
2022-04-26T05:07:44Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-04-26T09:23:04Z
ethz.rosetta.lastUpdated
2024-02-02T16:45:15Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Tensor%20rank%20bounds%20for%20point%20singularities%20in%20%E2%84%9D3&rft.jtitle=Advances%20in%20Computational%20Mathematics&rft.date=2022-04-14&rft.volume=48&rft.issue=3&rft.spage=18&rft.issn=1019-7168&1572-9044&rft.au=Marcati,%20Carlo&Rakhuba,%20Maxim&Schwab,%20Christoph&rft.genre=article&rft_id=info:doi/10.1007/s10444-022-09925-7&
Files in this item
Publication type
-
Journal Article [130547]