Show simple item record

dc.contributor.author
Zhang, Yun
dc.contributor.author
Zhu, Wenkai
dc.contributor.author
Zhang, Chi
dc.contributor.author
Peoples, Joseph
dc.contributor.author
Li, Xuan
dc.contributor.author
Felicelli, Andrea Lorena
dc.contributor.author
Shan, Xiwei
dc.contributor.author
Warsinger, David M.
dc.contributor.author
Borca-Tasciuc, Theodorian
dc.contributor.author
Ruan, Xiulin
dc.contributor.author
Li, Tian
dc.date.accessioned
2022-07-29T06:49:50Z
dc.date.available
2022-05-03T04:34:47Z
dc.date.available
2022-07-29T06:49:50Z
dc.date.issued
2022-04-13
dc.identifier.issn
1530-6984
dc.identifier.issn
1530-6992
dc.identifier.other
10.1021/acs.nanolett.1c04143
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/544758
dc.description.abstract
Atmospheric water harvesting (AWH) has received tremendous interest because of population growth, limited freshwater resources, and water pollution. However, key challenges remain in developing efficient, flexible, and lightweight AWH materials with scalability. Here, we demonstrated a radiative cooling fabric for AWH via its hierarchically structured cellulose network and hybrid sorption-dewing mechanisms. With 8.3% solar absorption and â 0.9 infrared (IR) emissivity, the material can drop up to 7.5 °C below ambient temperature without energy consumption via radiative cooling. Water adsorption onto the hydrophilic functional groups of cellulose is dominated by sorption at low relative humidity (RH) and dewing at high RH. The cellulose network provides desirable mechanical properties with entangled high-Aspect-ratio fibers over tens of adsorption-extraction cycles. In the field test, the cellulose sample exhibited water uptake of 1.29 kg/kg at 80% RH during the night. The profusion of radiative cooling fabric features desirable cost effectiveness and allows fast deployment into large-scale AWH applications.
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.subject
cellulose
en_US
dc.subject
radiative cooling
en_US
dc.subject
atmospheric water harvesting
en_US
dc.subject
energy efficiency
en_US
dc.subject
sustainability
en_US
dc.subject
large scale
en_US
dc.title
Atmospheric Water Harvesting by Large-Scale Radiative Cooling Cellulose-Based Fabric
en_US
dc.type
Journal Article
dc.date.published
2022-04-02
ethz.journal.title
Nano Letters
ethz.journal.volume
22
en_US
ethz.journal.issue
7
en_US
ethz.journal.abbreviated
Nano Lett
ethz.pages.start
2618
en_US
ethz.pages.end
2626
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2022-05-03T04:35:16Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-07-29T06:49:57Z
ethz.rosetta.lastUpdated
2022-07-29T06:49:57Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Atmospheric%20Water%20Harvesting%20by%20Large-Scale%20Radiative%20Cooling%20Cellulose-Based%20Fabric&rft.jtitle=Nano%20Letters&rft.date=2022-04-13&rft.volume=22&rft.issue=7&rft.spage=2618&rft.epage=2626&rft.issn=1530-6984&1530-6992&rft.au=Zhang,%20Yun&Zhu,%20Wenkai&Zhang,%20Chi&Peoples,%20Joseph&Li,%20Xuan&rft.genre=article&rft_id=info:doi/10.1021/acs.nanolett.1c04143&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record