Part Decomposition and Refinement Network for Human Parsing
dc.contributor.author
Yang, Lu
dc.contributor.author
Liu, Zhiwei
dc.contributor.author
Zhou, Tianfei
dc.contributor.author
Song, Qing
dc.date.accessioned
2022-06-17T08:44:16Z
dc.date.available
2022-06-16T07:39:31Z
dc.date.available
2022-06-17T08:44:16Z
dc.date.issued
2022-06
dc.identifier.other
10.1109/JAS.2022.105647
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/552630
dc.description.abstract
Dear Editor, This letter is concerned with human parsing based on part-wise semantic prediction. Human body can be regarded as a whole structure composed of different semantic parts, and the mainstream single human parser uses semantic segmentation pipeline to solve this problem. However, the differences between human parsing and semantic segmentation tasks bring some issues that are inevitable to avoid. In this paper, we propose a novel method called part decomposition and refinement network (PDRNet), which adopt part-wise mask prediction other than pixel-wise semantic prediction to tackle human parsing task. Specifically, we decompose the human body into different semantic parts and design a decomposition module to learn the central position of each part. The refinement module is proposed to obtain the mask of each human part by learning convolution kernel and convolved feature. In inference stage, the predicted human part masks are combined into a complete human parsing result. Through the decomposition, refinement and combination of human parts, PDRNet greatly reduces the confusion between the target human and the background human, and also significantly improves the semantic consistency of human part. Extensive experiments show that PDRNet performs favorably against state-of-the-art methods on several human parsing benchmarks, including LIP, CIHP and Pascal-Person-Part.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
Part Decomposition and Refinement Network for Human Parsing
en_US
dc.type
Other Journal Item
dc.date.published
2022-05-31
ethz.journal.title
IEEE/CAA Journal of Automatica Sinica
ethz.journal.volume
9
en_US
ethz.journal.issue
6
en_US
ethz.pages.start
1111
en_US
ethz.pages.end
1114
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2022-06-16T07:40:47Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-06-17T08:44:22Z
ethz.rosetta.lastUpdated
2023-02-07T03:35:47Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Part%20Decomposition%20and%20Refinement%20Network%20for%20Human%20Parsing&rft.jtitle=IEEE/CAA%20Journal%20of%20Automatica%20Sinica&rft.date=2022-06&rft.volume=9&rft.issue=6&rft.spage=1111&rft.epage=1114&rft.au=Yang,%20Lu&Liu,%20Zhiwei&Zhou,%20Tianfei&Song,%20Qing&rft.genre=unknown&rft_id=info:doi/10.1109/JAS.2022.105647&
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Other Journal Item [5602]