Show simple item record

dc.contributor.author
Alaifari, Rima
dc.contributor.author
Alberti, Giovanni S.
dc.contributor.author
Gauksson, Tandri
dc.date.accessioned
2022-06-20T11:49:45Z
dc.date.available
2022-06-16T12:53:58Z
dc.date.available
2022-06-20T11:49:45Z
dc.date.issued
2022-06
dc.identifier.uri
http://hdl.handle.net/20.500.11850/552828
dc.description.abstract
As interest in deep neural networks (DNNs) for image reconstruction tasks grows, their reliability has been called into question (Antun et al., 2020; Gottschling et al., 2020). However, recent work has shown that compared to total variation (TV) minimization, they show similar robustness to adversarial noise in terms of ℓ2-reconstruction error (Genzel et al., 2022). We consider a different notion of robustness, using the ℓ∞-norm, and argue that localized reconstruction artifacts are a more relevant defect than the ℓ2-error. We create adversarial perturbations to undersampled MRI measurements which induce severe localized artifacts in the TV-regularized reconstruction. The same attack method is not as effective against DNN based reconstruction. Finally, we show that this phenomenon is inherent to reconstruction methods for which exact recovery can be guaranteed, as with compressed sensing reconstructions with ℓ1- or TV-minimization.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.title
Localized adversarial artifacts for compressed sensing MRI
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2022-28
en_US
ethz.size
15 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::09603 - Alaifari, Rima / Alaifari, Rima
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::09603 - Alaifari, Rima / Alaifari, Rima
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=1016
ethz.relation.isPreviousVersionOf
handle/20.500.11850/646968
ethz.date.deposited
2022-06-16T12:54:04Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=1016
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-06-20T11:49:51Z
ethz.rosetta.lastUpdated
2023-02-07T03:37:44Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Localized%20adversarial%20artifacts%20for%20compressed%20sensing%20MRI&rft.jtitle=SAM%20Research%20Report&rft.date=2022-06&rft.volume=2022-28&rft.au=Alaifari,%20Rima&Alberti,%20Giovanni%20S.&Gauksson,%20Tandri&rft.genre=report&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record