Accelerated parallel non-conjugate sampling for Bayesian non-parametric models
dc.contributor.author
Zhang, Michael Minyi
dc.contributor.author
Williamson, Sinead A.
dc.contributor.author
Pérez-Cruz, Fernando
dc.date.accessioned
2022-06-20T06:01:23Z
dc.date.available
2022-06-19T03:34:00Z
dc.date.available
2022-06-20T06:01:23Z
dc.date.issued
2022-06-11
dc.identifier.issn
0960-3174
dc.identifier.issn
1573-1375
dc.identifier.other
10.1007/s11222-022-10108-z
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/553214
dc.description.abstract
Inference of latent feature models in the Bayesian nonparametric setting is generally difficult, especially in high dimensional settings, because it usually requires proposing features from some prior distribution. In special cases, where the integration is tractable, we can sample new feature assignments according to a predictive likelihood. We present a novel method to accelerate the mixing of latent variable model inference by proposing feature locations based on the data, as opposed to the prior. First, we introduce an accelerated feature proposal mechanism that we show is a valid MCMC algorithm for posterior inference. Next, we propose an approximate inference strategy to perform accelerated inference in parallel. A two-stage algorithm that combines the two approaches provides a computationally attractive method that can quickly reach local convergence to the posterior distribution of our model, while allowing us to exploit parallelization.
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.subject
Machine learning
en_US
dc.subject
Bayesian Non-parametrics
en_US
dc.subject
Scalable inference
en_US
dc.subject
Parallel computing
en_US
dc.title
Accelerated parallel non-conjugate sampling for Bayesian non-parametric models
en_US
dc.type
Journal Article
ethz.journal.title
Statistics and Computing
ethz.journal.volume
32
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Stat. comput.
ethz.pages.start
50
en_US
ethz.size
25 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2022-06-19T03:34:02Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-06-20T06:01:28Z
ethz.rosetta.lastUpdated
2023-02-07T03:37:05Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Accelerated%20parallel%20non-conjugate%20sampling%20for%20Bayesian%20non-parametric%20models&rft.jtitle=Statistics%20and%20Computing&rft.date=2022-06-11&rft.volume=32&rft.issue=3&rft.spage=50&rft.issn=0960-3174&1573-1375&rft.au=Zhang,%20Michael%20Minyi&Williamson,%20Sinead%20A.&P%C3%A9rez-Cruz,%20Fernando&rft.genre=article&rft_id=info:doi/10.1007/s11222-022-10108-z&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [136169]