Zur Kurzanzeige

dc.contributor.author
Bringmann, Karl
dc.contributor.author
Kisfaludi‑Bak, Sándor
dc.contributor.author
Künnemann, Marvin
dc.contributor.author
Nusser, André
dc.contributor.author
Parsaeian, Zahra
dc.contributor.editor
Goaoc, Xavier
dc.contributor.editor
Kerber, Michael
dc.date.accessioned
2022-06-22T09:13:54Z
dc.date.available
2022-06-21T12:11:18Z
dc.date.available
2022-06-22T09:13:54Z
dc.date.issued
2022
dc.identifier.isbn
978-3-95977-227-3
en_US
dc.identifier.issn
1868-8969
dc.identifier.other
10.4230/LIPICS.SOCG.2022.21
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/553719
dc.identifier.doi
10.3929/ethz-b-000553719
dc.description.abstract
We initiate the study of diameter computation in geometric intersection graphs from the fine-grained complexity perspective. A geometric intersection graph is a graph whose vertices correspond to some shapes in d-dimensional Euclidean space, such as balls, segments, or hypercubes, and whose edges correspond to pairs of intersecting shapes. The diameter of a graph is the largest distance realized by a pair of vertices in the graph. Computing the diameter in near-quadratic time is possible in several classes of intersection graphs [Chan and Skrepetos 2019], but it is not at all clear if these algorithms are optimal, especially since in the related class of planar graphs the diameter can be computed in Oe(n 5/3 ) time [Cabello 2019, Gawrychowski et al. 2021]. In this work we (conditionally) rule out sub-quadratic algorithms in several classes of intersection graphs, i.e., algorithms of running time O(n 2−δ ) for some δ > 0. In particular, there are no sub-quadratic algorithms already for fat objects in small dimensions: unit balls in R 3 or congruent equilateral triangles in R 2 . For unit segments and congruent equilateral triangles, we can even rule out strong sub-quadratic approximations already in R 2 . It seems that the hardness of approximation may also depend on dimensionality: for axis-parallel unit hypercubes in R 12, distinguishing between diameter 2 and 3 needs quadratic time (ruling out (3/2−ε)- approximations), whereas for axis-parallel unit squares, we give an algorithm that distinguishes between diameter 2 and 3 in near-linear time. Note that many of our lower bounds match the best known algorithms up to sub-polynomial factors. Ultimately, this fine-grained perspective may enable us to determine for which shapes we can have efficient algorithms and approximation schemes for diameter computation.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Hardness in P
en_US
dc.subject
Geometric Intersection Graph
en_US
dc.subject
Graph Diameter
en_US
dc.subject
Orthogonal Vectors
en_US
dc.subject
Hyperclique Detection
en_US
dc.subject
Theory of computation → Computational geometry
en_US
dc.title
Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-06-01
ethz.book.title
38th International Symposium on Computational Geometry (SoCG 2022)
en_US
ethz.journal.title
Leibniz International Proceedings in Informatics (LIPIcs)
ethz.journal.volume
224
en_US
ethz.journal.abbreviated
Leibniz Int. Proc. Inform.
ethz.pages.start
21
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
38th International Symposium on Computational Geometry (SoCG 2022)
en_US
ethz.event.location
Berlin, Germany
en_US
ethz.event.date
June 7-10, 2022
en_US
ethz.notes
Presentation held on June 7, 2022
en_US
ethz.identifier.scopus
ethz.publication.place
Dagstuhl
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::02889 - ETH Institut für Theoretische Studien / ETH Institute for Theoretical Studies
en_US
ethz.date.deposited
2022-06-21T12:11:24Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-06-22T09:14:01Z
ethz.rosetta.lastUpdated
2024-02-02T17:28:58Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Towards%20Sub-Quadratic%20Diameter%20Computation%20in%20Geometric%20Intersection%20Graphs&rft.jtitle=Leibniz%20International%20Proceedings%20in%20Informatics%20(LIPIcs)&rft.date=2022&rft.volume=224&rft.spage=21&rft.issn=1868-8969&rft.au=Bringmann,%20Karl&Kisfaludi%E2%80%91Bak,%20S%C3%A1ndor&K%C3%BCnnemann,%20Marvin&Nusser,%20Andr%C3%A9&Parsaeian,%20Zahra&rft.isbn=978-3-95977-227-3&rft.genre=proceeding&rft_id=info:doi/10.4230/LIPICS.SOCG.2022.21&rft.btitle=38th%20International%20Symposium%20on%20Computational%20Geometry%20(SoCG%202022)
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige