Free-breathing motion-informed locally low-rank quantitative 3D myocardial perfusion imaging
dc.contributor.author
Hoh, Tobias
dc.contributor.author
Vishnevskiy, Valery
dc.contributor.author
Polacin, Malgorzata
dc.contributor.author
Manka, Robert
dc.contributor.author
Fuetterer, Maximilian
dc.contributor.author
Kozerke, Sebastian
dc.date.accessioned
2022-08-02T09:56:49Z
dc.date.available
2022-06-26T02:56:40Z
dc.date.available
2022-07-27T14:13:57Z
dc.date.available
2022-08-02T09:56:49Z
dc.date.issued
2022-10
dc.identifier.issn
0740-3194
dc.identifier.issn
1522-2594
dc.identifier.other
10.1002/mrm.29295
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/554658
dc.identifier.doi
10.3929/ethz-b-000554658
dc.description.abstract
Purpose
To propose respiratory motion-informed locally low-rank reconstruction (MI-LLR) for robust free-breathing single-bolus quantitative 3D myocardial perfusion CMR imaging. Simulation and in-vivo results are compared to locally low-rank (LLR) and compressed sensing reconstructions (CS) for reference.
Methods
Data were acquired using a 3D Cartesian pseudo-spiral in-out k-t undersampling scheme (R = 10) and reconstructed using MI-LLR, which encompasses two stages. In the first stage, approximate displacement fields are derived from an initial LLR reconstruction to feed a motion-compensated reference system to a second reconstruction stage, which reduces the rank of the inverse problem. For comparison, data were also reconstructed with LLR and frame-by-frame CS using wavelets as sparsifying transform (l1-wavelet).
Reconstruction accuracy relative to ground truth was assessed using synthetic data for realistic ranges of breathing motion, heart rates, and SNRs. In-vivo experiments were conducted in healthy subjects at rest and during adenosine stress. Myocardial blood flow (MBF) maps were derived using a Fermi model.
Results
Improved uniformity of MBF maps with reduced local variations was achieved with MI-LLR. For rest and stress, intra-volunteer variation of absolute and relative MBF was lower in MI-LLR (±0.17 mL/g/min [26%] and ±1.07 mL/g/min [33%]) versus LLR (±0.19 mL/g/min [28%] and ±1.22 mL/g/min [36%]) and versus l1-wavelet (±1.17 mL/g/min [113%] and ±6.87 mL/g/min [115%]). At rest, intra-subject MBF variation was reduced significantly with MI-LLR.
Conclusion
The combination of pseudo-spiral Cartesian undersampling and dual-stage MI-LLR reconstruction improves free-breathing quantitative 3D myocardial perfusion CMR imaging under rest and stress condition.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
3D perfusion imaging
en_US
dc.subject
compressed sensing
en_US
dc.subject
dual sequence
en_US
dc.subject
single bolus
en_US
dc.subject
first-pass myocardial perfusion imaging
en_US
dc.subject
free-breathing
en_US
dc.subject
low-rank reconstruction
en_US
dc.subject
myocardial perfusion quantification
en_US
dc.title
Free-breathing motion-informed locally low-rank quantitative 3D myocardial perfusion imaging
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2022-06-17
ethz.journal.title
Magnetic Resonance in Medicine
ethz.journal.volume
88
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
Magn Reson Med
ethz.pages.start
1575
en_US
ethz.pages.end
1591
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02631 - Institut für Biomedizinische Technik / Institute for Biomedical Engineering::09548 - Kozerke, Sebastian / Kozerke, Sebastian
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02631 - Institut für Biomedizinische Technik / Institute for Biomedical Engineering::09548 - Kozerke, Sebastian / Kozerke, Sebastian
ethz.date.deposited
2022-06-26T02:57:11Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-08-02T09:56:57Z
ethz.rosetta.lastUpdated
2024-02-02T17:45:18Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Free-breathing%20motion-informed%20locally%20low-rank%20quantitative%203D%20myocardial%20perfusion%20imaging&rft.jtitle=Magnetic%20Resonance%20in%20Medicine&rft.date=2022-10&rft.volume=88&rft.issue=4&rft.spage=1575&rft.epage=1591&rft.issn=0740-3194&1522-2594&rft.au=Hoh,%20Tobias&Vishnevskiy,%20Valery&Polacin,%20Malgorzata&Manka,%20Robert&Fuetterer,%20Maximilian&rft.genre=article&rft_id=info:doi/10.1002/mrm.29295&
Files in this item
Publication type
-
Journal Article [132226]