Show simple item record

dc.contributor.author
Chu, Weibin
dc.contributor.author
Tan, Shijing
dc.contributor.author
Zheng, Qijing
dc.contributor.author
Fang, Wei
dc.contributor.author
Feng, Yexin
dc.contributor.author
Prezhdo, Oleg V.
dc.contributor.author
Wang, Bing
dc.contributor.author
Li, Xin-Zheng
dc.contributor.author
Jin, Zhao
dc.date.accessioned
2022-06-30T08:18:36Z
dc.date.available
2022-06-29T03:05:06Z
dc.date.available
2022-06-30T08:18:36Z
dc.date.issued
2022-06-17
dc.identifier.issn
2375-2548
dc.identifier.other
10.1126/sciadv.abo2675
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/555341
dc.identifier.doi
10.3929/ethz-b-000555341
dc.description.abstract
Understanding how the nuclear quantum effects (NQEs) in the hydrogen bond (H-bond) network influence the photoexcited charge transfer at semiconductor/molecule interface is a challenging problem. By combining two kinds of emerging molecular dynamics methods at the ab initio level, the path integral-based molecular dynamics and time-dependent nonadiabatic molecular dynamics, and choosing CH3OH/TiO2 as a prototypical system to study, we find that the quantum proton motion in the H-bond network is strongly coupled with the ultrafast photoexcited charge dynamics at the interface. The hole trapping ability of the adsorbed methanol molecule is notably enhanced by the NQEs, and thus, it behaves as a hole scavenger on titanium dioxide. The critical role of the H-bond network is confirmed by in situ scanning tunneling microscope measurements with ultraviolet light illumination. It is concluded the quantum proton motion in the H-bond network plays a critical role in influencing the energy conversion efficiency based on photoexcitation.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
AAAS
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.title
Ultrafast charge transfer coupled to quantum proton motion at molecule/metal oxide interface
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
ethz.journal.title
Science Advances
ethz.journal.volume
8
en_US
ethz.journal.issue
24
en_US
ethz.journal.abbreviated
Sci Adv
ethz.pages.start
eabo2675
en_US
ethz.size
9 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
ethz.publication.status
published
en_US
ethz.date.deposited
2022-06-29T03:05:10Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-06-30T08:18:43Z
ethz.rosetta.lastUpdated
2024-02-02T17:33:52Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Ultrafast%20charge%20transfer%20coupled%20to%20quantum%20proton%20motion%20at%20molecule/metal%20oxide%20interface&rft.jtitle=Science%20Advances&rft.date=2022-06-17&rft.volume=8&rft.issue=24&rft.spage=eabo2675&rft.issn=2375-2548&rft.au=Chu,%20Weibin&Tan,%20Shijing&Zheng,%20Qijing&Fang,%20Wei&Feng,%20Yexin&rft.genre=article&rft_id=info:doi/10.1126/sciadv.abo2675&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record