Show simple item record

dc.contributor.author
Stravs, Michael A.
dc.contributor.author
Dührkop, Kai
dc.contributor.author
Böcker, Sebastian
dc.contributor.author
Zamboni, Nicola
dc.date.accessioned
2022-07-27T14:17:27Z
dc.date.available
2022-07-02T04:17:43Z
dc.date.available
2022-07-27T14:17:27Z
dc.date.issued
2022-07
dc.identifier.issn
1548-7105
dc.identifier.issn
1548-7091
dc.identifier.other
10.1038/s41592-022-01486-3
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/555907
dc.identifier.doi
10.3929/ethz-b-000555907
dc.description.abstract
Current methods for structure elucidation of small molecules rely on finding similarity with spectra of known compounds, but do not predict structures de novo for unknown compound classes. We present MSNovelist, which combines fingerprint prediction with an encoder-decoder neural network to generate structures de novo solely from tandem mass spectrometry (MS2) spectra. In an evaluation with 3,863 MS2 spectra from the Global Natural Product Social Molecular Networking site, MSNovelist predicted 25% of structures correctly on first rank, retrieved 45% of structures overall and reproduced 61% of correct database annotations, without having ever seen the structure in the training phase. Similarly, for the CASMI 2016 challenge, MSNovelist correctly predicted 26% and retrieved 57% of structures, recovering 64% of correct database annotations. Finally, we illustrate the application of MSNovelist in a bryophyte MS2 dataset, in which de novo structure prediction substantially outscored the best database candidate for seven spectra. MSNovelist is ideally suited to complement library-based annotation in the case of poorly represented analyte classes and novel compounds.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
MSNovelist: de novo structure generation from mass spectra
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-05-30
ethz.journal.title
Nature Methods
ethz.journal.volume
19
en_US
ethz.journal.issue
7
en_US
ethz.journal.abbreviated
Nat Methods
ethz.pages.start
865
en_US
ethz.pages.end
870
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02538 - Institut für Molekulare Systembiologie / Institute for Molecular Systems Biology::08839 - Zamboni, Nicola (Tit.-Prof.)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02538 - Institut für Molekulare Systembiologie / Institute for Molecular Systems Biology::08839 - Zamboni, Nicola (Tit.-Prof.)
ethz.date.deposited
2022-07-02T04:18:21Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-07-27T14:17:34Z
ethz.rosetta.lastUpdated
2023-02-07T04:53:13Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=MSNovelist:%20de%20novo%20structure%20generation%20from%20mass%20spectra&rft.jtitle=Nature%20Methods&rft.date=2022-07&rft.volume=19&rft.issue=7&rft.spage=865&rft.epage=870&rft.issn=1548-7105&1548-7091&rft.au=Stravs,%20Michael%20A.&D%C3%BChrkop,%20Kai&B%C3%B6cker,%20Sebastian&Zamboni,%20Nicola&rft.genre=article&rft_id=info:doi/10.1038/s41592-022-01486-3&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record