Show simple item record

dc.contributor.author
Lutfallah, Mathieu
dc.contributor.author
Käch, Benno
dc.contributor.author
Hirt, Christian
dc.contributor.author
Kunz, Andreas
dc.contributor.editor
Miesenberger, Klaus
dc.contributor.editor
Kouroupetroglou, Georgios
dc.contributor.editor
Mavrou, Katerina
dc.contributor.editor
Manduchi, Roberto
dc.contributor.editor
Covarrubias Rodriguez, Mario
dc.contributor.editor
Peňáz, Petr
dc.date.accessioned
2022-07-06T12:59:17Z
dc.date.available
2022-07-04T08:28:08Z
dc.date.available
2022-07-04T09:06:28Z
dc.date.available
2022-07-06T12:59:17Z
dc.date.issued
2022
dc.identifier.isbn
9783031086472
en_US
dc.identifier.isbn
9783031086489
en_US
dc.identifier.issn
0302-9743
dc.identifier.issn
1611-3349
dc.identifier.other
10.1007/978-3-031-08648-9_35
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/556063
dc.identifier.doi
10.3929/ethz-b-000556063
dc.description.abstract
Facial expressions play an important role in human communication since they enrich spoken information and help convey additional sentiments e.g. mood. Among others, they non-verbally express a partner’s agreement or disagreement to spoken information. Further, together with the audio signal, humans can even detect nuances of changes in a person’s mood. However, facial expressions remain inaccessible to the blind and visually impaired, and also the voice signal alone might not carry enough mood information. Emotion recognition research mainly focused on detecting one of seven emotion classes. Such emotions are too detailed, and having an overall impression of primary emotional states such as positive, negative, or neutral is more beneficial for the visually impaired person in a lively discussion within a team. Thus, this paper introduces an emotion recognition system that allows a real-time detection of the emotions “agree”, “neutral”, and “disagree”, which are seen as the most important ones during a lively discussion. The proposed system relies on a combination of neural networks that allow extracting emotional states while leveraging the temporal information from videos.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Emotion recognition
en_US
dc.subject
neural networks
en_US
dc.subject
Non-verbal communication
en_US
dc.title
Emotion Recognition - A Tool to Improve Meeting Experience for Visually Impaired
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2022-07-01
ethz.book.title
Computers Helping People with Special Needs
en_US
ethz.journal.title
Lecture Notes in Computer Science
ethz.journal.volume
13341
en_US
ethz.journal.abbreviated
LNCS
ethz.pages.start
305
en_US
ethz.pages.end
312
en_US
ethz.size
8 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
Joint International Conference on Digital Inclusion, Assistive Technology & Accessibility (ICCHP-AAATE 2022),
en_US
ethz.event.location
Lecco, Italy
en_US
ethz.event.date
July 11–15, 2022
en_US
ethz.publication.place
Cham
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::08844 - Kunz, Andreas (Tit.-Prof.) / Kunz, Andreas (Tit.-Prof.)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::08844 - Kunz, Andreas (Tit.-Prof.) / Kunz, Andreas (Tit.-Prof.)
en_US
ethz.date.deposited
2022-07-04T08:28:16Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-07-04T09:06:35Z
ethz.rosetta.lastUpdated
2024-02-02T17:35:42Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Emotion%20Recognition%20-%20A%20Tool%20to%C2%A0Improve%20Meeting%20Experience%20for%C2%A0Visually%20Impaired&rft.jtitle=Lecture%20Notes%20in%20Computer%20Science&rft.date=2022&rft.volume=13341&rft.spage=305&rft.epage=312&rft.issn=0302-9743&1611-3349&rft.au=Lutfallah,%20Mathieu&K%C3%A4ch,%20Benno&Hirt,%20Christian&Kunz,%20Andreas&rft.isbn=9783031086472&9783031086489&rft.genre=proceeding&rft_id=info:doi/10.1007/978-3-031-08648-9_35&rft.btitle=Computers%20Helping%20People%20with%20Special%20Needs
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record