Show simple item record

dc.contributor.author
Schweitzer, Frank
dc.date.accessioned
2022-07-13T09:41:30Z
dc.date.available
2022-07-13T03:06:58Z
dc.date.available
2022-07-13T09:41:30Z
dc.date.issued
2022-10
dc.identifier.issn
0378-4371
dc.identifier.issn
1873-2119
dc.identifier.other
10.1016/j.physa.2022.127630
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/557737
dc.identifier.doi
10.3929/ethz-b-000557737
dc.description.abstract
We evaluate the robustness and adaptivity of social groups with heterogeneous agents that are characterized by their binary state, their ability to change this state, their status and their preferred relations to other agents. To define group structures, we operationalize the hexagrams of the I Ching. The relations and properties of agents are used to quantify their influence according to the social impact theory. From these influence values we derive a weighted stability measure for triads involving three agents, which is based on the weighted balance theory. It allows to quantify the robustness of groups and to propose a novel measure for group resilience which combines robustness and adaptivity. A stochastic approach determines the probabilities to find robust and adaptive groups. The discussion focuses on the generalization of our approach.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Group relations
en_US
dc.subject
Structural balance
en_US
dc.subject
Triadic stability
en_US
dc.subject
Heterogeneous agents
en_US
dc.title
Group relations, resilience and the I Ching
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2022-06-02
ethz.journal.title
Physica A: Statistical Mechanics and its Applications
ethz.journal.volume
603
en_US
ethz.journal.abbreviated
Physica A
ethz.pages.start
127630
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Signed Relations and Structural Balance in Complex Systems: From Data to Models
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03682 - Schweitzer, Frank / Schweitzer, Frank
en_US
ethz.grant.agreementno
192746
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte GSW
ethz.date.deposited
2022-07-13T03:07:03Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-07-13T09:41:37Z
ethz.rosetta.lastUpdated
2022-07-13T09:41:37Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Group%20relations,%20resilience%20and%20the%20I%20Ching&rft.jtitle=Physica%20A:%20Statistical%20Mechanics%20and%20its%20Applications&rft.date=2022-10&rft.volume=603&rft.spage=127630&rft.issn=0378-4371&1873-2119&rft.au=Schweitzer,%20Frank&rft.genre=article&rft_id=info:doi/10.1016/j.physa.2022.127630&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record