Zur Kurzanzeige

dc.contributor.author
Gao, Bingjie
dc.contributor.author
Zhou, Qianli
dc.contributor.author
Deng, Yong
dc.date.accessioned
2022-08-15T08:54:48Z
dc.date.available
2022-07-20T03:27:06Z
dc.date.available
2022-08-15T08:54:48Z
dc.date.issued
2022-08
dc.identifier.issn
0020-0255
dc.identifier.issn
1872-6291
dc.identifier.other
10.1016/j.ins.2022.07.026
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/558954
dc.description.abstract
Information modeling and handling in uncertain environments is an important topic in the field of modern artificial intelligence. In practical applications of classification problems, the data harvested by the agent is usually not precise. Based on multi-valued mapping of probabilities expressed by Basic Probability Assignment (BPA), Dempster-Shafer Theory (DST) has a strong ability to model and handle uncertain information. In this paper, we propose a method of fusing attributes to enhance the quality of uncertain data under the framework of DST. The fusion method is based on proposed uncertainty and dissimilarity measures, which performs consistent transformations on belief information in DST. We simulate uncertain data by adding different noises to precise datasets and classify the improved data using common classifiers. With the increasing uncertainty degree of data, the proposed method has higher accuracy and robustness than other methods.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Dempster-Shafer Theory
en_US
dc.subject
Fractal-based belief information measures
en_US
dc.subject
Uncertain data
en_US
dc.subject
Attribute fusion
en_US
dc.subject
Classification
en_US
dc.title
BIM-AFA: Belief information measure-based attribute fusion approach in improving the quality of uncertain data
en_US
dc.type
Journal Article
dc.date.published
2022-07-06
ethz.journal.title
Information Sciences
ethz.journal.volume
608
en_US
ethz.journal.abbreviated
Inf. sci. (Print)
ethz.pages.start
950
en_US
ethz.pages.end
969
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2022-07-20T03:27:11Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-08-15T08:54:56Z
ethz.rosetta.lastUpdated
2023-02-07T05:18:10Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=BIM-AFA:%20Belief%20information%20measure-based%20attribute%20fusion%20approach%20in%20improving%20the%20quality%20of%20uncertain%20data&rft.jtitle=Information%20Sciences&rft.date=2022-08&rft.volume=608&rft.spage=950&rft.epage=969&rft.issn=0020-0255&1872-6291&rft.au=Gao,%20Bingjie&Zhou,%20Qianli&Deng,%20Yong&rft.genre=article&rft_id=info:doi/10.1016/j.ins.2022.07.026&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige