Long Plane Trees
dc.contributor.author
Cabello, Sergio
dc.contributor.author
Hoffmann, Michael
dc.contributor.author
Klost, Katharina
dc.contributor.author
Mulzer, Wolfgang
dc.contributor.author
Tkadlec, Josef
dc.contributor.editor
Goaoc, Xavier
dc.contributor.editor
Kerber, Michael
dc.date.accessioned
2022-08-03T08:30:20Z
dc.date.available
2022-07-26T03:08:09Z
dc.date.available
2022-08-03T08:30:20Z
dc.date.issued
2022
dc.identifier.issn
1868-8969
dc.identifier.other
10.4230/LIPIcs.SoCG.2022.23
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/559976
dc.identifier.doi
10.3929/ethz-b-000559976
dc.description.abstract
In the longest plane spanning tree problem, we are given a finite planar point set P, and our task is to find a plane (i.e., noncrossing) spanning tree TOPT for P with maximum total Euclidean edge length |TOPT|. Despite more than two decades of research, it remains open if this problem is NP-hard. Thus, previous efforts have focused on polynomial-time algorithms that produce plane trees whose total edge length approximates |TOPT|. The approximate trees in these algorithms all have small unweighted diameter, typically three or four. It is natural to ask whether this is a common feature of longest plane spanning trees, or an artifact of the specific approximation algorithms. We provide three results to elucidate the interplay between the approximation guarantee and the unweighted diameter of the approximate trees. First, we describe a polynomial-time algorithm to construct a plane tree TALG with diameter at most four and |TALG| = 0.546 · |TOPT|. This constitutes a substantial improvement over the state of the art. Second, we show that a longest plane tree among those with diameter at most three can be found in polynomial time. Third, for any candidate diameter d = 3, we provide upper bounds on the approximation factor that can be achieved by a longest plane tree with diameter at most d (compared to a longest plane tree without constraints).
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
geometric network design
en_US
dc.subject
spanning trees
en_US
dc.subject
plane straight-line graphs
en_US
dc.subject
approximation algorithms
en_US
dc.title
Long Plane Trees
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-06-01
ethz.book.title
38th International Symposium on Computational Geometry
en_US
ethz.journal.title
Leibniz International Proceedings in Informatics (LIPIcs)
ethz.journal.volume
224
en_US
ethz.journal.abbreviated
Leibniz Int. Proc. Inform.
ethz.pages.start
23
en_US
ethz.size
17 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
38th International Symposium on Computational Geometry (SoCG 2022)
en_US
ethz.event.location
Berlin, Germany
en_US
ethz.event.date
June 7-10, 2022
en_US
ethz.identifier.scopus
ethz.publication.place
Saarbrücken
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::03672 - Steger, Angelika / Steger, Angelika::03457 - Welzl, Emo (emeritus) / Welzl, Emo (emeritus)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::03672 - Steger, Angelika / Steger, Angelika::03457 - Welzl, Emo (emeritus) / Welzl, Emo (emeritus)
ethz.date.deposited
2022-07-26T03:08:16Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-08-03T08:30:27Z
ethz.rosetta.lastUpdated
2024-02-02T17:46:00Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Long%20Plane%20Trees&rft.jtitle=Leibniz%20International%20Proceedings%20in%20Informatics%20(LIPIcs)&rft.date=2022&rft.volume=224&rft.spage=23&rft.issn=1868-8969&rft.au=Cabello,%20Sergio&Hoffmann,%20Michael&Klost,%20Katharina&Mulzer,%20Wolfgang&Tkadlec,%20Josef&rft.genre=proceeding&rft_id=info:doi/10.4230/LIPIcs.SoCG.2022.23&rft.btitle=38th%20International%20Symposium%20on%20Computational%20Geometry
Files in this item
Publication type
-
Conference Paper [35842]