Show simple item record

dc.contributor.author
Ahmerkamp, Soeren
dc.contributor.author
Jalaluddin, Farooq Moin
dc.contributor.author
Cui, Yuan
dc.contributor.author
Brumley, Douglas R.
dc.contributor.author
Pacherres, Cesar O.
dc.contributor.author
Berg, Jasmine
dc.contributor.author
Stocker, Roman
dc.contributor.author
Kuypers, Marcel M.M.
dc.contributor.author
Koren, Klaus
dc.contributor.author
Behrendt, Lars
dc.date.accessioned
2022-08-02T11:43:24Z
dc.date.available
2022-07-29T03:31:59Z
dc.date.available
2022-08-02T11:43:24Z
dc.date.issued
2022-05-23
dc.identifier.issn
2667-2375
dc.identifier.other
10.1016/j.crmeth.2022.100216
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/560740
dc.identifier.doi
10.3929/ethz-b-000560740
dc.description.abstract
From individual cells to whole organisms, O2 transport unfolds across micrometer- to millimeter-length scales and can change within milliseconds in response to fluid flows and organismal behavior. The spatiotemporal complexity of these processes makes the accurate assessment of O2 dynamics via currently available methods difficult or unreliable. Here, we present “sensPIV,” a method to simultaneously measure O2 concentrations and flow fields. By tracking O2-sensitive microparticles in flow using imaging technologies that allow for instantaneous referencing, we measured O2 transport within (1) microfluidic devices, (2) sinking model aggregates, and (3) complex colony-forming corals. Through the use of sensPIV, we find that corals use ciliary movement to link zones of photosynthetic O2 production to zones of O2 consumption. SensPIV can potentially be extendable to study flow-organism interactions across many life-science and engineering applications.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Cell Press
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
imaging
en_US
dc.subject
oxygen
en_US
dc.subject
flow fields
en_US
dc.subject
nutrients
en_US
dc.subject
fluxes
en_US
dc.subject
corals
en_US
dc.subject
particles
en_US
dc.subject
aggregates
en_US
dc.subject
microfluidics
en_US
dc.title
Simultaneous visualization of flow fields and oxygen concentrations to unravel transport and metabolic processes in biological systems
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
ethz.journal.title
Cell Reports Methods
ethz.journal.volume
2
en_US
ethz.journal.issue
5
en_US
ethz.pages.start
100216
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2022-07-29T03:32:04Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-08-02T11:43:34Z
ethz.rosetta.lastUpdated
2023-02-07T04:58:38Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Simultaneous%20visualization%20of%20flow%20fields%20and%20oxygen%20concentrations%20to%20unravel%20transport%20and%20metabolic%20processes%20in%20biological%20systems&rft.jtitle=Cell%20Reports%20Methods&rft.date=2022-05-23&rft.volume=2&rft.issue=5&rft.spage=100216&rft.issn=2667-2375&rft.au=Ahmerkamp,%20Soeren&Jalaluddin,%20Farooq%20Moin&Cui,%20Yuan&Brumley,%20Douglas%20R.&Pacherres,%20Cesar%20O.&rft.genre=article&rft_id=info:doi/10.1016/j.crmeth.2022.100216&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record