HECATE: Performance-Aware Scale Optimization for Homomorphic Encryption Compiler
dc.contributor.author
Lee, Yongwoo
dc.contributor.author
Heo, Seonyeong
dc.contributor.author
Cheon, Seonyoung
dc.contributor.author
Jeong, Shinnung
dc.contributor.author
Kim, Changsu
dc.contributor.author
Kim, Eunkyung
dc.contributor.author
Lee, Dongyoon
dc.contributor.author
Kim, Hanjun
dc.date.accessioned
2022-08-02T15:49:24Z
dc.date.available
2022-07-31T03:03:38Z
dc.date.available
2022-08-02T15:49:24Z
dc.date.issued
2022
dc.identifier.isbn
978-1-6654-0584-3
en_US
dc.identifier.isbn
978-1-6654-0585-0
en_US
dc.identifier.other
10.1109/CGO53902.2022.9741265
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/560989
dc.description.abstract
Despite the benefit of Fully Homomorphic Encryption (FHE) that supports encrypted computation, writing an efficient FHE application is challenging due to magnitude scale management. Each FHE operation increases scales of ciphertext and leaving the scales high harms performance of the following FHE operations. Thus, resealing ciphertext is inevitable to optimize an FHE application, but since FHE requires programmers to match the resealing levels of operands of each FHE operation, programmers should rescale ciphertext reflecting the entire FHE application. Although recently proposed FHE compilers reduce the programming burden by automatically manipulating ciphertext scales, they fail to fully optimize the FHE application because they greedily rescale the ciphertext without considering their performance impacts throughout the entire application.
en_US
dc.description.abstract
This work proposes HECATE, a new FHE compiler framework that optimizes scales of ciphertext reflecting their resealing levels and performance impact. With a new type system that embeds the scale and resealing level, and a new resealing operation called downscale, HECATE makes various scale management plans, analyzes their expected performance, and finds the optimal resealing points throughout the entire FHE application. This work implements HECATE on top of the MLIR framework with a Python frontend and shows that HECATE achieves 27% speedup over the state-of-the-art approach for various FHE applications.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Homomorphic encryption
en_US
dc.subject
Compiler
en_US
dc.subject
privacy-preserving machine learning
en_US
dc.subject
deep learning
en_US
dc.title
HECATE: Performance-Aware Scale Optimization for Homomorphic Encryption Compiler
en_US
dc.type
Conference Paper
dc.date.published
2022-03-29
ethz.book.title
2022 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)
en_US
ethz.pages.start
193
en_US
ethz.pages.end
204
en_US
ethz.event
IEEE/ACM International Symposium on Code Generation and Optimization (CGO 2022)
en_US
ethz.event.location
Online
en_US
ethz.event.date
April 2-6, 2022
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2022-07-31T03:04:00Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-08-02T15:49:31Z
ethz.rosetta.lastUpdated
2022-08-02T15:49:31Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=HECATE:%20Performance-Aware%20Scale%20Optimization%20for%20Homomorphic%20Encryption%20Compiler&rft.date=2022&rft.spage=193&rft.epage=204&rft.au=Lee,%20Yongwoo&Heo,%20Seonyeong&Cheon,%20Seonyoung&Jeong,%20Shinnung&Kim,%20Changsu&rft.isbn=978-1-6654-0584-3&978-1-6654-0585-0&rft.genre=proceeding&rft_id=info:doi/10.1109/CGO53902.2022.9741265&rft.btitle=2022%20IEEE/ACM%20International%20Symposium%20on%20Code%20Generation%20and%20Optimization%20(CGO)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35866]