Show simple item record

dc.contributor.author
De Ryck, Tim
dc.contributor.author
Mishra, Siddhartha
dc.date.accessioned
2022-08-16T08:35:53Z
dc.date.available
2022-08-05T07:49:55Z
dc.date.available
2022-08-16T08:35:53Z
dc.date.issued
2022-07
dc.identifier.uri
http://hdl.handle.net/20.500.11850/562121
dc.description.abstract
We derive rigorous bounds on the error resulting from the approximation of the solution of parametric hyperbolic scalar conservation laws with ReLU neural networks. We show that the approximation error can be made as small as desired with ReLU neural networks that overcome the curse of dimensionality. In addition, we provide an explicit upper bound on the generalization error in terms of the training error, number of training samples and the neural network size. The theoretical results are illustrated by numerical experiments.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.title
Error analysis for deep neural network approximations of parametric hyperbolic conservation laws
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2022-34
en_US
ethz.size
26 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=1022
ethz.relation.isPreviousVersionOf
handle/20.500.11850/649793
ethz.date.deposited
2022-08-05T07:50:03Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=1022
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-08-16T08:36:00Z
ethz.rosetta.lastUpdated
2022-08-16T08:36:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Error%20analysis%20for%20deep%20neural%20network%20approximations%20of%20parametric%20hyperbolic%20conservation%20laws&rft.jtitle=SAM%20Research%20Report&rft.date=2022-07&rft.volume=2022-34&rft.au=De%20Ryck,%20Tim&Mishra,%20Siddhartha&rft.genre=report&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record