Show simple item record

dc.contributor.author
Aellen, Marianne
dc.contributor.supervisor
Norris, David J.
dc.contributor.supervisor
Atwater, Harry A.
dc.contributor.supervisor
Faist, Jérôme
dc.contributor.supervisor
Ning, Cun-Zheng
dc.date.accessioned
2023-12-14T06:44:03Z
dc.date.available
2022-08-11T19:28:34Z
dc.date.available
2022-08-12T05:23:19Z
dc.date.available
2023-12-14T06:44:03Z
dc.date.issued
2022-05-15
dc.identifier.uri
http://hdl.handle.net/20.500.11850/563300
dc.identifier.doi
10.3929/ethz-b-000563300
dc.description.abstract
Plasmonic lasers are the plasmonic analog to conventional lasers. They coherently amplify surface plasmon polaritons (shortened to surface plasmons) instead of photons. Surface plasmons are electromagnetic waves that propagate at the interface between a metal and a dielectric. The free electrons in the metal contribute to this wave giving it partial electronic character. This allows surface plasmons to be confined to much smaller volumes than the minimum size of conventional light as dictated by the diffraction limit. Therefore, plasmonic lasers can be much smaller than their photonic counterparts. Moreover, they provide sources of coherent surface plasmons that can be used to feed optical circuitry. Consequently, optical components can be miniaturized, rendering them more efficient and cost-effective. In addition, due to their high field intensity, coherently amplified surface plasmons can be used to improve sensors and applications that rely on nonlinear effects. In this thesis, we thoroughly study the fabrication, characterization, and design of plasmonic lasers, enabling an in-depth understanding of these devices. First, we experimentally investigate a plasmonic laser that is based on a metallic cavity inside which a gain medium is deposited. The open-cavity design allows us to characterize the lasing behavior. We find that the thickness of the gain medium largely determines whether the metallic cavity lases in the plasmonic or photonic modes. A theoretical model gives insight into the underlying physics of these findings and allows us to make predictions for improved laser designs. Second, we examine the confinement factor, a metric for describing how geometrical aspects of waveguides that include a gain medium influence the amplification of waveguide modes. This discussion is particularly important, as ambiguous interpretations of the confinement factor are common in the literature, hindering optimization of optical gain in waveguides. We clarify these ambiguities and provide the necessary understanding to correctly employ the confinement factor for optimization of designs in nanophotonics and plasmonics. Third, we optimize the geometry of plasmonic Fabry–Pérot lasers to minimize their threshold gain. A plasmonic laser combines a lossy metal and a medium that exhibits gain. By tailoring the geometry of the waveguide inside the Fabry–Pérot cavity, the material contributions to the amplification of the waveguide mode can be tuned. Therefore, the gain required to reach the lasing threshold can be minimized by clever design choices. We find that the magnitude of the reflection losses significantly influences the optimal geometry and identify suitable design guidelines. In summary, this thesis provides an in-depth understanding of various aspects of plasmonic lasers. Besides the experimental study that involves fabrication and characterization of plasmonic lasers, it also gives physical insights through theoretical models. This knowledge can be used to improve the design of plasmonic lasers for practical applications.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Nanotechnology
en_US
dc.subject
Nanofabrication
en_US
dc.subject
Nanophotonics
en_US
dc.subject
Plasmonics
en_US
dc.subject
Surface plasmon polariton
en_US
dc.subject
Laser physics
en_US
dc.subject
Plasmonic laser
en_US
dc.subject
Spaser
en_US
dc.subject
Optical gain
en_US
dc.subject
Confinement factor
en_US
dc.subject
Lasing threshold
en_US
dc.subject
Waveguide
en_US
dc.subject
Optical materials
en_US
dc.subject
Nanoplatelets
en_US
dc.title
Understanding plasmonic lasers: Fabrication, characterization, and design of plasmonic Fabry–Pérot lasers
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2022-08-12
ethz.size
117 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::530 - Physics
en_US
ethz.grant
Quantum-Dot Plasmonics and Spasers
en_US
ethz.identifier.diss
28275
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03875 - Norris, David J. / Norris, David J.
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03875 - Norris, David J. / Norris, David J.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03875 - Norris, David J. / Norris, David J.
ethz.grant.agreementno
339905
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
FP7
ethz.date.deposited
2022-08-11T19:28:41Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.date.embargoend
2023-08-11
ethz.rosetta.installDate
2022-08-12T05:23:27Z
ethz.rosetta.lastUpdated
2024-02-03T08:01:26Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Understanding%20plasmonic%20lasers:%20Fabrication,%20characterization,%20and%20design%20of%20plasmonic%20Fabry%E2%80%93P%C3%A9rot%20lasers&rft.date=2022-05-15&rft.au=Aellen,%20Marianne&rft.genre=unknown&rft.btitle=Understanding%20plasmonic%20lasers:%20Fabrication,%20characterization,%20and%20design%20of%20plasmonic%20Fabry%E2%80%93P%C3%A9rot%20lasers
 Search print copy at ETH Library

Files in this item

Thumbnail
Thumbnail

Publication type

Show simple item record