Show simple item record

dc.contributor.author
Wang, Yi
dc.contributor.author
Lebovitz, Luzian
dc.contributor.author
Zheng, Kedi
dc.contributor.author
Zhou, Yao
dc.date.accessioned
2022-08-19T12:44:58Z
dc.date.available
2022-08-13T06:10:21Z
dc.date.available
2022-08-18T14:09:36Z
dc.date.available
2022-08-19T12:44:58Z
dc.date.issued
2022-07
dc.identifier.issn
2096-0042
dc.identifier.other
10.17775/CSEEJPES.2020.06390
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/563561
dc.description.abstract
Partitioning a complex power network into a number of sub-zones can help realize a 'divide-and-conquer' management structure for the whole system, such as voltage and reactive power control, coherency identification, power system restoration, etc. Extensive partitioning methods have been proposed by defining various distances, applying different clustering methods, or formulating varying optimization models for one specific objective. However, a power network partition may serve two or more objectives, where a trade-off among these objectives is required. This paper proposes a novel weighted consensus clustering-based approach for bi-objective power network partition. By varying the weights of different partitions for different objectives, Pareto improvement can be explored based on the node-based and subset-based consensus clustering methods. Case studies on the IEEE 300-bus test system are conducted to verify the effectiveness and superiority of our proposed method.
en_US
dc.language.iso
en
en_US
dc.publisher
Chinese Society for Electrical Engineering
en_US
dc.subject
Consensus clustering
en_US
dc.subject
network partition
en_US
dc.subject
bi-objective partition
en_US
dc.subject
machine learning
en_US
dc.title
Consensus Clustering for Bi-objective Power Network Partition
en_US
dc.type
Journal Article
ethz.journal.title
CSEE Journal of Power and Energy Systems
ethz.journal.volume
8
en_US
ethz.journal.issue
4
en_US
ethz.pages.start
973
en_US
ethz.pages.end
982
en_US
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2022-08-13T06:10:29Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-08-18T14:09:42Z
ethz.rosetta.lastUpdated
2024-02-02T17:52:31Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Consensus%20Clustering%20for%20Bi-objective%20Power%20Network%20Partition&rft.jtitle=CSEE%20Journal%20of%20Power%20and%20Energy%20Systems&rft.date=2022-07&rft.volume=8&rft.issue=4&rft.spage=973&rft.epage=982&rft.issn=2096-0042&rft.au=Wang,%20Yi&Lebovitz,%20Luzian&Zheng,%20Kedi&Zhou,%20Yao&rft.genre=article&rft_id=info:doi/10.17775/CSEEJPES.2020.06390&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record