Show simple item record

dc.contributor.author
Flannigan, Stuart
dc.contributor.author
Pearson, Natalie
dc.contributor.author
Low, Guang Hao
dc.contributor.author
Buyskikh, Anton
dc.contributor.author
Bloch, Immanuel
dc.contributor.author
Zoller, Peter
dc.contributor.author
Troyer, Matthias
dc.contributor.author
Daley, Andrew J.
dc.date.accessioned
2022-09-07T08:48:12Z
dc.date.available
2022-09-04T05:24:14Z
dc.date.available
2022-09-07T08:48:12Z
dc.date.issued
2022
dc.identifier.issn
2058-9565
dc.identifier.other
10.1088/2058-9565/ac88f5
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/568694
dc.description.abstract
The rapid development in hardware for quantum computing and simulation has led to much interest in problems where these devices can exceed the capabilities of existing classical computers and known methods. Approaching this for problems that go beyond testing the performance of a quantum device is an important step, and quantum simulation of many-body quench dynamics is one of the most promising candidates for early practical quantum advantage. We analyse the requirements for quantitatively reliable quantum simulation beyond the capabilities of existing classical methods for analogue quantum simulators with neutral atoms in optical lattices and trapped ions. Considering the primary sources of error in analogue devices and how they propagate after a quench in studies of the Hubbard or long-range transverse field Ising model, we identify the level of error expected in quantities we extract from experiments. We conclude for models that are directly implementable that regimes of practical quantum advantage are attained in current experiments with analogue simulators. We also identify the hardware requirements to reach the same level of accuracy with future fault-tolerant digital quantum simulation. Verification techniques are already available to test the assumptions we make here, and demonstrating these in experiments will be an important next step.
en_US
dc.language.iso
en
en_US
dc.publisher
IOP Publishing
dc.subject
many-body quantum simulation
en_US
dc.subject
quantum advantage
en_US
dc.subject
quantum resource estimation
en_US
dc.subject
analogue quantum simulation
en_US
dc.subject
digital quantum simulation
en_US
dc.title
Propagation of errors and quantitative quantum simulation with quantum advantage
en_US
dc.type
Journal Article
dc.date.published
2022-08-30
ethz.journal.title
Quantum Science and Technology
ethz.journal.volume
7
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
Quantum Sci. Technol.
ethz.pages.start
045025
en_US
ethz.size
26 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Philadelphia, PA
ethz.publication.status
published
en_US
ethz.date.deposited
2022-09-04T05:24:56Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-09-07T08:48:19Z
ethz.rosetta.lastUpdated
2024-02-02T18:04:03Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Propagation%20of%20errors%20and%20quantitative%20quantum%20simulation%20with%20quantum%20advantage&rft.jtitle=Quantum%20Science%20and%20Technology&rft.date=2022&rft.volume=7&rft.issue=4&rft.spage=045025&rft.issn=2058-9565&rft.au=Flannigan,%20Stuart&Pearson,%20Natalie&Low,%20Guang%20Hao&Buyskikh,%20Anton&Bloch,%20Immanuel&rft.genre=article&rft_id=info:doi/10.1088/2058-9565/ac88f5&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record