![Thumbnail](/bitstream/handle/20.500.11850/571253/eth-47434-01.pdf.jpg?sequence=4&isAllowed=y)
Open access
Autor(in)
Datum
2012-07Typ
- Report
ETH Bibliographie
yes
Altmetrics
Abstract
We extend recent results of QMC quadrature and Finite Element discretization for parametric, scalar second order elliptic partial differential equations to general QMC-Galerkin discretizations of parametric operator equations, which depend on possibly countably many parameters. Such problems typically arise in the numerical solution of differential and integral equations with random field inputs. The present setting covers general second order elliptic equations which are possibly indefinite (Helmholtz equation), or which are given in saddle point variational form (such as mixed formulations). The also cover nonsymmetric variational formulations which appear in space-time Galerkin discretizations of parabolic problems or countably parametric nonlinear initial value problems (HaSc11). Mehr anzeigen
Persistenter Link
https://doi.org/10.3929/ethz-a-010395837Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
SAM Research ReportBand
Verlag
Seminar for Applied Mathematics, ETH ZurichOrganisationseinheit
03435 - Schwab, Christoph / Schwab, Christoph
Förderung
247277 - Automated Urban Parking and Driving (EC)
Zugehörige Publikationen und Daten
Is previous version of: http://hdl.handle.net/20.500.11850/79162
ETH Bibliographie
yes
Altmetrics