Open access
Autor(in)
Datum
2010-07Typ
- Report
ETH Bibliographie
yes
Altmetrics
Abstract
For a class of linear parabolic equations we propose a nonadaptive sparse space-time Galerkin least squares discretization. We formulate criteria on the trial and test spaces for the well-posedness of the corresponding Galerkin least squares solution. In order to obtain discrete stability uniformly in the discretization parameters, we allow test spaces which are suitably larger than the trial space. The problem is then reduced to a finite, overdetermined linear system of equations by a choice of bases. We present several strategies that render the resulting normal equations well-conditioned uniformly in the discretization parameters. The numerical solution is then shown to converge quasi-optimally to the exact solution in the natural space for the original equation. Numerical examples for the heat equation confirm the theory. Mehr anzeigen
Persistenter Link
https://doi.org/10.3929/ethz-a-010399592Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
SAM Research ReportBand
Verlag
Seminar for Applied Mathematics, ETH ZurichAusgabe / Version
Revised: May 2011Organisationseinheit
02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
03435 - Schwab, Christoph / Schwab, Christoph
Förderung
247277 - Automated Urban Parking and Driving (EC)
Zugehörige Publikationen und Daten
Is previous version of: http://hdl.handle.net/20.500.11850/59271
ETH Bibliographie
yes
Altmetrics