Space-time wavelet finite element method for parabolic equations
dc.contributor.author
Andreev, Roman
dc.date.accessioned
2022-09-19T06:59:46Z
dc.date.available
2022-09-19T06:56:27Z
dc.date.available
2022-09-19T06:59:46Z
dc.date.issued
2010-07
dc.identifier.uri
http://hdl.handle.net/20.500.11850/571269
dc.identifier.doi
10.3929/ethz-a-010399592
dc.description.abstract
For a class of linear parabolic equations we propose a nonadaptive sparse space-time Galerkin least squares discretization. We formulate criteria on the trial and test spaces for the well-posedness of the corresponding Galerkin least squares solution. In order to obtain discrete stability uniformly in the discretization parameters, we allow test spaces which are suitably larger than the trial space. The problem is then reduced to a finite, overdetermined linear system of equations by a choice of bases. We present several strategies that render the resulting normal equations well-conditioned uniformly in the discretization parameters. The numerical solution is then shown to converge quasi-optimally to the exact solution in the natural space for the original equation. Numerical examples for the heat equation confirm the theory.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Space-time wavelet finite element method for parabolic equations
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
SAM Research Report
ethz.journal.volume
2010-20
en_US
ethz.size
27 p.
en_US
ethz.version.edition
Revised: May 2011
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.grant
Automated Urban Parking and Driving
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=50
ethz.grant.agreementno
247277
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
FP7
ethz.relation.isPreviousVersionOf
20.500.11850/59271
ethz.date.deposited
2017-06-10T12:14:40Z
ethz.source
ECOL
ethz.source
ECIT
ethz.identifier.importid
imp59366b717f2c030468
ethz.identifier.importid
imp59365028e782e87787
ethz.ecolpid
eth:47474
ethz.ecitpid
pub:97072
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-09-19T06:56:36Z
ethz.rosetta.lastUpdated
2023-02-07T06:22:48Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/154977
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/60787
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Space-time%20wavelet%20finite%20element%20method%20for%20parabolic%20equations&rft.jtitle=SAM%20Research%20Report&rft.date=2010-07&rft.volume=2010-20&rft.au=Andreev,%20Roman&rft.genre=report&
Files in this item
Publication type
-
Report [6866]