Direct implementation of a perceptron in superconducting circuit quantum hardware
dc.contributor.author
Pechal, Marek
dc.contributor.author
Roy, Federico
dc.contributor.author
Wilkinson, Samuel A.
dc.contributor.author
Salis, Gian
dc.contributor.author
Werninghaus, Max
dc.contributor.author
Hartmann, Michael J.
dc.contributor.author
Filipp, Stefan
dc.date.accessioned
2022-09-26T06:24:27Z
dc.date.available
2022-09-23T03:03:39Z
dc.date.available
2022-09-26T06:24:27Z
dc.date.issued
2022-09
dc.identifier.issn
2643-1564
dc.identifier.other
10.1103/PhysRevResearch.4.033190
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/572445
dc.identifier.doi
10.3929/ethz-b-000572445
dc.description.abstract
The utility of classical neural networks as universal approximators suggests that their quantum analogues could play an important role in quantum generalizations of machine-learning methods. Inspired by the proposal in Torrontegui and Garcia-Ripoll [Europhys. Lett. 125, 30004 (2019)], we demonstrate a superconducting qubit implementation of a controlled gate, which generalizes the action of a classical perceptron as the basic building block of a quantum neural network. In a two-qubit setup we show full control over the steepness of the perceptron activation function, the input weight and the bias by tuning the gate length, the coupling between the qubits, and the frequency of the applied drive, respectively. In its general form, the gate realizes a multiqubit entangling operation in a single step, whose decomposition into single-and two-qubit gates would require a number of gates that is exponential in the number of qubits. Its demonstrated direct implementation as perceptron in quantum hardware may therefore lead to more powerful quantum neural networks when combined with suitable additional standard gates.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
en_US
dc.subject
Quantum algorithms
en_US
dc.subject
Quantum control
en_US
dc.subject
Quantum entanglement
en_US
dc.subject
Quantum gates
en_US
dc.subject
Quantum information with solid state qubits
en_US
dc.subject
Quantum networks
en_US
dc.title
Direct implementation of a perceptron in superconducting circuit quantum hardware
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-09-08
ethz.journal.title
Physical Review Research
ethz.journal.volume
4
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Phys. Rev. Res.
ethz.pages.start
033190
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
College Park, MD
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2022-09-23T03:03:41Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-09-26T06:24:28Z
ethz.rosetta.lastUpdated
2023-02-07T06:32:14Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Direct%20implementation%20of%20a%20perceptron%20in%20superconducting%20circuit%20quantum%20hardware&rft.jtitle=Physical%20Review%20Research&rft.date=2022-09&rft.volume=4&rft.issue=3&rft.spage=033190&rft.issn=2643-1564&rft.au=Pechal,%20Marek&Roy,%20Federico&Wilkinson,%20Samuel%20A.&Salis,%20Gian&Werninghaus,%20Max&rft.genre=article&rft_id=info:doi/10.1103/PhysRevResearch.4.033190&
Files in this item
Publication type
-
Journal Article [133720]