Dynamics-based machine learning of transitions in Couette flow
dc.contributor.author
Kaszás, Bálint
dc.contributor.author
Cenedese, Mattia
dc.contributor.author
Haller, George
dc.date.accessioned
2022-09-26T09:34:52Z
dc.date.available
2022-09-24T05:09:33Z
dc.date.available
2022-09-26T09:33:54Z
dc.date.available
2022-09-26T09:34:52Z
dc.date.issued
2022-08
dc.identifier.issn
2469-990X
dc.identifier.other
10.1103/PhysRevFluids.7.L082402
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/572538
dc.description.abstract
We derive low-dimensional, data-driven models for transitions among exact coherent states in one of the most studied canonical shear flows, the plane Couette flow. These one- or two-dimensional nonlinear models represent the leading-order reduced dynamics on attracting spectral submanifolds (SSMs), which we construct using the recently developed SSMLearn algorithm from a small number of simulated transitions. We find that the energy input and dissipation rates provide efficient parametrizations for the most important SSMs. By restricting the dynamics to these SSMs, we obtain reduced-order models that also reliably predict nearby, off-SSM transitions that were not used in their training.
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.subject
Flow instability
en_US
dc.subject
Shear flows
en_US
dc.subject
Taylor-Couette system
en_US
dc.subject
Coherent structures
en_US
dc.subject
High dimensional systems
en_US
dc.title
Dynamics-based machine learning of transitions in Couette flow
en_US
dc.type
Journal Article
dc.date.published
2022-08-25
ethz.journal.title
Physical Review Fluids
ethz.journal.volume
7
en_US
ethz.journal.issue
8
en_US
ethz.journal.abbreviated
Phys. Rev. Fluids
ethz.pages.start
L082402
en_US
ethz.size
9 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
College Park, MD
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::03973 - Haller, George / Haller, George
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::03973 - Haller, George / Haller, George
ethz.date.deposited
2022-09-24T05:09:40Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-09-26T09:33:55Z
ethz.rosetta.lastUpdated
2023-02-07T06:32:40Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Dynamics-based%20machine%20learning%20of%20transitions%20in%20Couette%20flow&rft.jtitle=Physical%20Review%20Fluids&rft.date=2022-08&rft.volume=7&rft.issue=8&rft.spage=L082402&rft.issn=2469-990X&rft.au=Kasz%C3%A1s,%20B%C3%A1lint&Cenedese,%20Mattia&Haller,%20George&rft.genre=article&rft_id=info:doi/10.1103/PhysRevFluids.7.L082402&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [130376]