HPCG for FPGAs: A Data-Centric Approach
dc.contributor.author
Steiger, Rahul
dc.contributor.supervisor
Hoefler, Torsten
dc.contributor.supervisor
De Matteis, Tiziano
dc.date.accessioned
2022-09-28T06:39:07Z
dc.date.available
2022-09-27T16:54:01Z
dc.date.available
2022-09-28T06:39:07Z
dc.date.issued
2022-09-01
dc.identifier.uri
http://hdl.handle.net/20.500.11850/572923
dc.identifier.doi
10.3929/ethz-b-000572923
dc.description.abstract
Field programmable gate arrays (FPGAs) have become increasingly popular in the high-performance computing (HPC) community due to their versatility in providing application-specific hardware acceleration. The main advantage of an FPGA is that it can be reconfigured as needed for each application. This property places the FPGA between general-purpose hardware like CPUs and custom-built ASICs. With the introduction of HBM memory into modern FPGAs and the ability to reduce data movement significantly, FPGAs have become very effective at tackling memory-bound HPC workloads. One of the most popular metrics used to evaluate the performance of supercomputing systems on memory-bound applications is the High-Performance Conjugate Gradient (HPCG) benchmark.
The DaCe framework provides an abstraction that allows for programming in the context of FPGAs, GPUs, and CPUs. This thesis will discuss our efforts in creating an HPCG implementation that targets the FPGA architecture using the DaCe Python API. We discuss the design choices we made for our HPCG DaCe Python implementation, which includes how we handled the restrictions imposed by using Python with the DaCe framework and the FPGA-optimized kernel implementations. In the final chapter, we address possible performance improvements regarding our implementation and the DaCe framework.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
FPGA
en_US
dc.subject
HPC
en_US
dc.subject
Xilinx
en_US
dc.subject
HBM
en_US
dc.title
HPCG for FPGAs: A Data-Centric Approach
en_US
dc.type
Bachelor Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
66 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02666 - Institut für Hochleistungsrechnersysteme / Inst. f. High Performance Computing Syst::03950 - Hoefler, Torsten / Hoefler, Torsten
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02666 - Institut für Hochleistungsrechnersysteme / Inst. f. High Performance Computing Syst::03950 - Hoefler, Torsten / Hoefler, Torsten
en_US
ethz.date.deposited
2022-09-27T16:54:01Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-09-28T06:39:08Z
ethz.rosetta.lastUpdated
2023-02-07T06:48:32Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=HPCG%20for%20FPGAs:%20A%20Data-Centric%20Approach&rft.date=2022-09-01&rft.au=Steiger,%20Rahul&rft.genre=unknown&rft.btitle=HPCG%20for%20FPGAs:%20A%20Data-Centric%20Approach
Files in this item
Publication type
-
Bachelor Thesis [182]