Metadata only
Date
2007-10Type
- Journal Article
ETH Bibliography
yes
Altmetrics
Abstract
The (subjective) indifference value of a payoff in an incomplete financial market is that monetary amount which leaves an agent indifferent between buying or not buying the payoff when she always optimally exploits her trading opportunities. We study these values over time when they are defined with respect to a dynamic monetary concave utility functional, that is, minus a dynamic convex risk measure. For that purpose, we prove some new results about families of conditional convex risk measures. We study the convolution of abstract conditional convex risk measures and show that it preserves the dynamic property of time-consistency. Moreover, we construct a dynamic risk measure (or utility functional) associated to superreplication in a market with trading constraints and prove that it is time-consistent. By combining these results, we deduce that the corresponding indifference valuation functional is again time-consistent. As an auxiliary tool, we establish a variant of the representation theorem for conditional convex risk measures in terms of equivalent probability measures. Show more
Publication status
publishedExternal links
Journal / series
Mathematical FinanceVolume
Pages / Article No.
Publisher
BlackwellSubject
Utility indifference valuation; Monetary concave utility functionals; Time-consistency; Convolution; Representation of risk measures; Convex risk measures; Incomplete marketsOrganisational unit
03658 - Schweizer, Martin / Schweizer, Martin
More
Show all metadata
ETH Bibliography
yes
Altmetrics