Show simple item record

dc.contributor.author
Gebhard, Timothy D.
dc.contributor.author
Bonse, Markus J.
dc.contributor.author
Quanz, Sascha Patrick
dc.contributor.author
Schölkopf, Bernhard
dc.date.accessioned
2022-10-21T10:46:45Z
dc.date.available
2022-10-20T03:21:22Z
dc.date.available
2022-10-21T10:46:45Z
dc.date.issued
2022-10
dc.identifier.issn
0004-6361
dc.identifier.issn
1432-0746
dc.identifier.other
10.1051/0004-6361/202142529
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/576928
dc.identifier.doi
10.3929/ethz-b-000576928
dc.description.abstract
Context. High-contrast imaging of exoplanets hinges on powerful post-processing methods to denoise the data and separate the signal of a companion from its host star, which is typically orders of magnitude brighter. Aims. Existing post-processing algorithms do not use all prior domain knowledge that is available about the problem. We propose a new method that builds on our understanding of the systematic noise and the causal structure of the data-generating process. Methods. Our algorithm is based on a modified version of half-sibling regression (HSR), a flexible denoising framework that combines ideas from the fields of machine learning and causality. We adapted the method to address the specific requirements of high-contrast exoplanet imaging data obtained in pupil tracking mode. The key idea is to estimate the systematic noise in a pixel by regressing the time series of this pixel onto a set of causally independent, signal-free predictor pixels. We use regularized linear models in this work; however, other (nonlinear) models are also possible. In a second step, we demonstrate how the HSR framework allows us to incorporate observing conditions such as wind speed or air temperature as additional predictors. Results. When we applied our method to four data sets from the VLT/NACO instrument, our algorithm provided a better false-positive fraction than a popular baseline method in the field. Additionally, we found that the HSR-based method provides direct and accurate estimates for the contrast of the exoplanets without the need to insert artificial companions for calibration in the data sets. Finally, we present a first piece of evidence that using the observing conditions as additional predictors can improve the results. Conclusions. Our HSR-based method provides an alternative, flexible, and promising approach to the challenge of modeling and subtracting the stellar PSF and systematic noise in exoplanet imaging data.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
EDP Sciences
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
methods: data analysis
en_US
dc.subject
techniques: image processing
en_US
dc.subject
planets and satellites: detection
en_US
dc.title
Half-sibling regression meets exoplanet imaging: PSF modeling and subtraction using a flexible, domain knowledge-driven, causal framework
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-09-29
ethz.journal.title
Astronomy & Astrophysics
ethz.journal.volume
666
en_US
ethz.journal.abbreviated
Astron. Astrophys.
ethz.pages.start
A9
en_US
ethz.size
23 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Les Ulis
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02532 - Institut für Teilchen- und Astrophysik / Inst. Particle Physics and Astrophysics::09680 - Quanz, Sascha Patrick / Quanz, Sascha Patrick
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02532 - Institut für Teilchen- und Astrophysik / Inst. Particle Physics and Astrophysics::09680 - Quanz, Sascha Patrick / Quanz, Sascha Patrick
ethz.date.deposited
2022-10-20T03:21:29Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-10-21T10:46:46Z
ethz.rosetta.lastUpdated
2023-02-07T07:17:08Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Half-sibling%20regression%20meets%20exoplanet%20imaging:%20PSF%20modeling%20and%20subtraction%20using%20a%20flexible,%20domain%20knowledge-driven,%20causal%20framework&rft.jtitle=Astronomy%20&%20Astrophysics&rft.date=2022-10&rft.volume=666&rft.spage=A9&rft.issn=0004-6361&1432-0746&rft.au=Gebhard,%20Timothy%20D.&Bonse,%20Markus%20J.&Quanz,%20Sascha%20Patrick&Sch%C3%B6lkopf,%20Bernhard&rft.genre=article&rft_id=info:doi/10.1051/0004-6361/202142529&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record