Deep learning-based behavioral profiling of rodent stroke recovery
dc.contributor.author
Weber, Rebecca Z.
dc.contributor.author
Mulders, Geertje
dc.contributor.author
Kaiser, Julia
dc.contributor.author
Tackenberg, Christian
dc.contributor.author
Rust, Ruslan
dc.date.accessioned
2022-10-24T13:44:47Z
dc.date.available
2022-10-23T03:37:37Z
dc.date.available
2022-10-24T13:44:47Z
dc.date.issued
2022-10-15
dc.identifier.issn
1741-7007
dc.identifier.other
10.1186/s12915-022-01434-9
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/577327
dc.identifier.doi
10.3929/ethz-b-000577327
dc.description.abstract
BACKGROUND: Stroke research heavily relies on rodent behavior when assessing underlying disease mechanisms and treatment efficacy. Although functional motor recovery is considered the primary targeted outcome, tests in rodents are still poorly reproducible and often unsuitable for unraveling the complex behavior after injury. RESULTS: Here, we provide a comprehensive 3D gait analysis of mice after focal cerebral ischemia based on the new deep learning-based software (DeepLabCut, DLC) that only requires basic behavioral equipment. We demonstrate a high precision 3D tracking of 10 body parts (including all relevant joints and reference landmarks) in several mouse strains. Building on this rigor motion tracking, a comprehensive post-analysis (with >100 parameters) unveils biologically relevant differences in locomotor profiles after a stroke over a time course of 3 weeks. We further refine the widely used ladder rung test using deep learning and compare its performance to human annotators. The generated DLC-assisted tests were then benchmarked to five widely used conventional behavioral set-ups (neurological scoring, rotarod, ladder rung walk, cylinder test, and single-pellet grasping) regarding sensitivity, accuracy, time use, and costs. CONCLUSIONS: We conclude that deep learning-based motion tracking with comprehensive post-analysis provides accurate and sensitive data to describe the complex recovery of rodents following a stroke. The experimental set-up and analysis can also benefit a range of other neurological injuries that affect locomotion.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
DeepLabCut
en_US
dc.subject
Deep learning
en_US
dc.subject
Automated behavior analysis
en_US
dc.subject
Photothrombotic stroke
en_US
dc.subject
Brain injury
en_US
dc.subject
Locomotor profle
en_US
dc.subject
Behavioral tests
en_US
dc.subject
Ischemic stroke
en_US
dc.subject
Mouse
en_US
dc.title
Deep learning-based behavioral profiling of rodent stroke recovery
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
BMC Biology
ethz.journal.volume
20
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
BMC Biol
ethz.pages.start
232
en_US
ethz.size
19 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2022-10-23T03:37:38Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-10-24T13:44:49Z
ethz.rosetta.lastUpdated
2023-02-07T07:19:13Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Deep%20learning-based%20behavioral%20profiling%20of%20rodent%20stroke%20recovery&rft.jtitle=BMC%20Biology&rft.date=2022-10-15&rft.volume=20&rft.issue=1&rft.spage=232&rft.issn=1741-7007&rft.au=Weber,%20Rebecca%20Z.&Mulders,%20Geertje&Kaiser,%20Julia&Tackenberg,%20Christian&Rust,%20Ruslan&rft.genre=article&rft_id=info:doi/10.1186/s12915-022-01434-9&
Files in this item
Publication type
-
Journal Article [130514]