Universal structural requirements for maximal robust perfect adaptation in biomolecular networks

Open access
Date
2022-10-25Type
- Journal Article
Abstract
Adaptation is a running theme in biology. It allows a living system to survive and thrive in the face of unpredictable environments by maintaining key physiological variables at their desired levels through tight regulation. When one such variable is maintained at a certain value at the steady state despite perturbations to a single input, this property is called robust perfect adaptation (RPA). Here we address and solve the fundamental problem of maximal RPA (maxRPA), whereby, for a designated output variable, RPA is achieved with respect to perturbations in virtually all network parameters. In particular, we show that the maxRPA property imposes certain structural constraints on the network. We then prove that these constraints are fully characterized by simple linear algebraic stoichiometric conditions which differ between deterministic and stochastic descriptions of the dynamics. We use our results to derive a new internal model principle (IMP) for biomolecular maxRPA networks, akin to the celebrated IMP in control theory. We exemplify our results through several known biological examples of robustly adapting networks and construct examples of such networks with the aid of our linear algebraic characterization. Our results reveal the universal requirements for maxRPA in all biological systems, and establish a foundation for studying adaptation in general biomolecular networks, with important implications for both systems and synthetic biology. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000578194Publication status
publishedExternal links
Journal / series
Proceedings of the National Academy of Sciences of the United States of AmericaVolume
Pages / Article No.
Publisher
National Academy of SciencesSubject
robust perfect adaptation; internal model principle; biomolecular controllers; systems biology; synthetic biologyOrganisational unit
03921 - Khammash, Mustafa / Khammash, Mustafa
Funding
743269 - Theory and Design tools for bio-molecular control systems (EC)
More
Show all metadata