Show simple item record

dc.contributor.author
Ghielmetti, Nicolò
dc.contributor.author
Loncar, Vladimir
dc.contributor.author
Pierini, Maurizio
dc.contributor.author
Roed, Marcel
dc.contributor.author
Summers, Sioni
dc.contributor.author
Aarrestad, Thea
dc.contributor.author
Petersson, Christoffer
dc.contributor.author
Linander, Hampus
dc.contributor.author
Ngadiuba, Jennifer
dc.contributor.author
Lin, Kelvin
dc.contributor.author
Harris, Philip
dc.date.accessioned
2022-11-22T08:06:53Z
dc.date.available
2022-11-22T04:02:33Z
dc.date.available
2022-11-22T08:06:53Z
dc.date.issued
2022-12
dc.identifier.issn
2632-2153
dc.identifier.other
10.1088/2632-2153/ac9cb5
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/582216
dc.identifier.doi
10.3929/ethz-b-000582216
dc.description.abstract
In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators for real-time semantic segmentation tasks relevant for autonomous driving. Considering compressed versions of the ENet convolutional neural network architecture, we demonstrate a fully-on-chip deployment with a latency of 4.9 ms per image, using less than 30% of the available resources on a Xilinx ZCU102 evaluation board. The latency is reduced to 3 ms per image when increasing the batch size to ten, corresponding to the use case where the autonomous vehicle receives inputs from multiple cameras simultaneously. We show, through aggressive filter reduction and heterogeneous quantization-aware training, and an optimized implementation of convolutional layers, that the power consumption and resource utilization can be significantly reduced while maintaining accuracy on the Cityscapes dataset.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IOP Publishing
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
FPGA
en_US
dc.subject
computer vision
en_US
dc.subject
deep learning
en_US
dc.subject
hls4ml
en_US
dc.subject
machine learning
en_US
dc.subject
autonomous vehicles
en_US
dc.subject
semantic segmentation
en_US
dc.title
Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-11-04
ethz.journal.title
Machine Learning: Science and Technology
ethz.journal.volume
3
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
Mach. Learn.: Sci. Technol.
ethz.pages.start
045011
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02532 - Institut für Teilchen- und Astrophysik / Inst. Particle Physics and Astrophysics::03593 - Dissertori, Günther / Dissertori, Günther
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02532 - Institut für Teilchen- und Astrophysik / Inst. Particle Physics and Astrophysics::03593 - Dissertori, Günther / Dissertori, Günther
ethz.date.deposited
2022-11-22T04:02:35Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-11-22T08:06:54Z
ethz.rosetta.lastUpdated
2023-02-07T07:59:31Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Real-time%20semantic%20segmentation%20on%20FPGAs%20for%20autonomous%20vehicles%20with%20hls4ml&rft.jtitle=Machine%20Learning:%20Science%20and%20Technology&rft.date=2022-12&rft.volume=3&rft.issue=4&rft.spage=045011&rft.issn=2632-2153&rft.au=Ghielmetti,%20Nicol%C3%B2&Loncar,%20Vladimir&Pierini,%20Maurizio&Roed,%20Marcel&Summers,%20Sioni&rft.genre=article&rft_id=info:doi/10.1088/2632-2153/ac9cb5&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record