Exploiting Near-Data Processing to Accelerate Time Series Analysis
dc.contributor.author
Fernandez, Ivan
dc.contributor.author
Quislant, Ricardo
dc.contributor.author
Giannoula, Christina
dc.contributor.author
Alser, Mohammed
dc.contributor.author
Gómez Luna, Juan
dc.contributor.author
Gutierrez, Eladio
dc.contributor.author
Plata, Oscar
dc.contributor.author
Mutlu, Onur
dc.date.accessioned
2023-07-24T08:15:56Z
dc.date.available
2022-12-15T04:01:42Z
dc.date.available
2022-12-15T08:04:45Z
dc.date.available
2022-12-15T09:07:43Z
dc.date.available
2023-07-24T08:15:56Z
dc.date.issued
2022
dc.identifier.isbn
978-1-6654-6605-9
en_US
dc.identifier.isbn
978-1-6654-6606-6
en_US
dc.identifier.other
10.1109/ISVLSI54635.2022.00061
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/587237
dc.description.abstract
A time series is a chronologically ordered set of samples of a real-valued variable that can contain millions of observations. Time series analysis is used to analyze information in a wide variety of domains [128]: epidemiology, genomics, neuroscience, medicine, environmental sciences, economics, and more. Time series analysis includes finding similarities (mo-tifs) and anomalies (discords) between every two subsequences (i.e., slices of consecutive data points) of the time series. There are two major approaches for motif and discord discovery: approximate and exact algorithms. Approximate algorithms are faster than exact algorithms, but they can provide inaccurate results or limited discord detection, which cannot be tolerated by many applications (e.g., vehicle safety systems). Unlike approximate algorithms, exact algorithms do not yield false positives or discordant dismissals, but can be very time-consuming on large time series data. Thus, anytime versions (aka interruptible algorithms) of exact algorithms are proposed to provide approximate solutions quickly and can return a valid result even if the user stops their execution early. The state-of-the-art exact anytime method for motif and discord discovery is matrix profile [142], which is based on Euclidean distances and floating-point arithmetic. We evaluate a recent CPU implementation of the matrix profile algorithm [149] on a real multi-core machine (Intel Xeon Phi KNL [76]) and observe that its performance is heavily bottlenecked by data movement. In other words, the amount of computation per data access is not enough to hide the memory latency and thus time series analysis is memory-bound. This overhead caused by data movement limits the potential benefits of acceleration efforts that do not alleviate the data movement bottleneck in current time series applications.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Time series analysis
en_US
dc.subject
Near data processing
en_US
dc.subject
Accelerator
en_US
dc.title
Exploiting Near-Data Processing to Accelerate Time Series Analysis
en_US
dc.type
Conference Paper
dc.date.published
2022-10-18
ethz.book.title
2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
en_US
ethz.pages.start
279
en_US
ethz.pages.end
282
en_US
ethz.event
IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2022)
en_US
ethz.event.location
Pafos, Cyprus
en_US
ethz.event.date
July 4-6, 2022
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::09483 - Mutlu, Onur / Mutlu, Onur
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::09483 - Mutlu, Onur / Mutlu, Onur
ethz.date.deposited
2022-12-15T04:01:44Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2023-07-24T08:15:57Z
ethz.rosetta.lastUpdated
2023-07-24T08:15:57Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Exploiting%20Near-Data%20Processing%20to%20Accelerate%20Time%20Series%20Analysis&rft.date=2022&rft.spage=279&rft.epage=282&rft.au=Fernandez,%20Ivan&Quislant,%20Ricardo&Giannoula,%20Christina&Alser,%20Mohammed&G%C3%B3mez%20Luna,%20Juan&rft.isbn=978-1-6654-6605-9&978-1-6654-6606-6&rft.genre=proceeding&rft_id=info:doi/10.1109/ISVLSI54635.2022.00061&rft.btitle=2022%20IEEE%20Computer%20Society%20Annual%20Symposium%20on%20VLSI%20(ISVLSI)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33508]