Metadata only
Datum
2012-10Typ
- Report
ETH Bibliographie
yes
Altmetrics
Abstract
We consider scalar hyperbolic conservation laws in several space dimensions, with a class of random (and parametric) flux functions. We propose a Karhunen–Loève expansion on the state space of the random flux. For random flux functions which are Lipschitz continuous with respect to the state variable, we prove the existence of a unique random entropy solution. Using a Karhunen–Loève spectral decomposition of the random flux into principal components with respect to the state variables, we introduce a family of parametric, deterministic entropy solutions on high-dimensional parameter spaces. We prove bounds on the sensitivity of the parametric and of the random entropy solutions on the Karhunen–Loève parameters. We also outline the convergence analysis for two classes of discretization schemes, the Multi-Level Monte-Carlo Finite-Volume Method (MLMCFVM) developed in [22, 24, 23], and the stochastic collocation Finite Volume Method (SCFVM) of [25]. Mehr anzeigen
Publikationsstatus
unpublishedZeitschrift / Serie
Research ReportBand
Verlag
ETH Zürich, Seminar für Angewandte MathematikOrganisationseinheit
03435 - Schwab, Christoph / Schwab, Christoph
03851 - Mishra, Siddhartha / Mishra, Siddhartha
ETH Bibliographie
yes
Altmetrics