Using Quantile Forecasts for Dynamic Equivalents of Active Distribution Grids under Uncertainty
dc.contributor.author
Vorwerk, Johanna
dc.contributor.author
Zufferey, Thierry
dc.contributor.author
Aristidou, Petros
dc.contributor.author
Hug, Gabriela
dc.date.accessioned
2023-07-13T08:21:01Z
dc.date.available
2023-01-18T07:58:51Z
dc.date.available
2023-01-18T10:58:26Z
dc.date.available
2023-01-18T14:20:11Z
dc.date.available
2023-01-18T15:06:33Z
dc.date.available
2023-07-13T08:21:01Z
dc.date.issued
2022-07
dc.identifier.other
10.48550/ARXIV.2207.03915
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/593203
dc.identifier.doi
10.3929/ethz-b-000593203
dc.description.abstract
While distribution networks (DNs) turn from consumers to active and responsive intelligent DNs, the question of how to represent them in large-scale transmission network (TN) studies is still under investigation. The standard approach that uses aggregated models for the inverter-interfaced generation and conventional load models introduces significant errors to the dynamic modeling that can lead to instabilities. This paper presents a new approach based on quantile forecasting to represent the uncertainty originating in DNs at the TN level. First, we aquire a required rich dataset employing Monte Carlo simulations of a DN. Then, we use machine learning (ML) algorithms to not only predict the most probable response but also intervals of potential responses with predefined confidence. These quantile methods represent the variance in DN responses at the TN level. The results indicate excellent performance for most ML techniques. The tuned quantile equivalents predict accurate bands for the current at the TN/DN-interface, and tests with unseen TN conditions indicate robustness. A final assessment that compares the MC trajectories against the predicted intervals highlights the potential of the proposed method.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Cornell University
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
quantile forecasting
en_US
dc.subject
Active distribution network
en_US
dc.subject
Frequency stability
en_US
dc.subject
dynamic equivalents
en_US
dc.subject
Monte Carlo simulation
en_US
dc.title
Using Quantile Forecasts for Dynamic Equivalents of Active Distribution Grids under Uncertainty
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
ethz.journal.title
arXiv
ethz.pages.start
41
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
11th Bulk Power Systems Dynamics and Control Symposium (IREP 2022)
en_US
ethz.event.location
Banff, Canada
en_US
ethz.event.date
July 25-30 2022
en_US
ethz.publication.place
Ithaca, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02632 - Inst. f. El. Energieübertragung u. Hoch. / Power Systems and High Voltage Lab.::09481 - Hug, Gabriela / Hug, Gabriela
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02632 - Inst. f. El. Energieübertragung u. Hoch. / Power Systems and High Voltage Lab.::09481 - Hug, Gabriela / Hug, Gabriela
en_US
ethz.identifier.url
https://www.youtube.com/watch?v=g3WTnoCBKb0&t=3527s
ethz.date.deposited
2023-01-18T07:58:51Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-01-18T14:20:13Z
ethz.rosetta.lastUpdated
2024-02-03T01:39:15Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Using%20Quantile%20Forecasts%20for%20Dynamic%20Equivalents%20of%20Active%20Distribution%20Grids%20under%20Uncertainty&rft.jtitle=arXiv&rft.date=2022-07&rft.spage=41&rft.au=Vorwerk,%20Johanna&Zufferey,%20Thierry&Aristidou,%20Petros&Hug,%20Gabriela&rft.genre=proceeding&rft_id=info:doi/10.48550/ARXIV.2207.03915&
Files in this item
Publication type
-
Conference Paper [35280]