On the Fairness of Causal Algorithmic Recourse
dc.contributor.author
von Kügelgen, Julius
dc.contributor.author
Karimi, Amir-Hossein
dc.contributor.author
Bhatt, Umang
dc.contributor.author
Valera, Isabel
dc.contributor.author
Weller, Adrian
dc.contributor.author
Schölkopf, Bernhard
dc.date.accessioned
2023-03-03T11:39:45Z
dc.date.available
2023-01-23T16:14:30Z
dc.date.available
2023-02-15T16:03:48Z
dc.date.available
2023-03-03T11:39:45Z
dc.date.issued
2022-06-30
dc.identifier.isbn
978-1-57735-876-3
en_US
dc.identifier.issn
2159-5399
dc.identifier.issn
2374-3468
dc.identifier.other
10.1609/aaai.v36i9.21192
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/594260
dc.description.abstract
Algorithmic fairness is typically studied from the perspective of predictions. Instead, here we investigate fairness from the perspective of recourse actions suggested to individuals to remedy an unfavourable classification. We propose two new fair-ness criteria at the group and individual level, which—unlike prior work on equalising the average group-wise distance from the decision boundary—explicitly account for causal relationships between features, thereby capturing downstream effects of recourse actions performed in the physical world. We explore how our criteria relate to others, such as counterfactual fairness, and show that fairness of recourse is complementary to fairness of prediction. We study theoretically and empirically how to enforce fair causal recourse by altering the classifier and perform a case study on the Adult dataset. Finally, we discuss whether fairness violations in the data generating process revealed by our criteria may be better addressed by societal interventions as opposed to constraints on the classifier.
en_US
dc.language.iso
en
en_US
dc.publisher
AAAI
dc.title
On the Fairness of Causal Algorithmic Recourse
en_US
dc.type
Conference Paper
dc.date.published
2022-06-28
ethz.journal.title
Proceedings of the AAAI Conference on Artificial Intelligence
ethz.journal.volume
36
en_US
ethz.journal.issue
9
en_US
ethz.pages.start
9584
en_US
ethz.pages.end
9594
en_US
ethz.event
36th AAAI Conference on Artificial Intelligence (AAAI-2022)
ethz.event.location
Online
ethz.event.date
February 22 - March 1, 2022
ethz.publication.place
Palo Alto, CA
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09664 - Schölkopf, Bernhard / Schölkopf, Bernhard
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09664 - Schölkopf, Bernhard / Schölkopf, Bernhard
en_US
ethz.date.deposited
2023-01-23T16:14:31Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2023-02-15T16:03:49Z
ethz.rosetta.lastUpdated
2024-02-02T20:43:13Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=On%20the%20Fairness%20of%20Causal%20Algorithmic%20Recourse&rft.jtitle=Proceedings%20of%20the%20AAAI%20Conference%20on%20Artificial%20Intelligence&rft.date=2022-06-30&rft.volume=36&rft.issue=9&rft.spage=9584&rft.epage=9594&rft.issn=2159-5399&2374-3468&rft.au=von%20K%C3%BCgelgen,%20Julius&Karimi,%20Amir-Hossein&Bhatt,%20Umang&Valera,%20Isabel&Weller,%20Adrian&rft.isbn=978-1-57735-876-3&rft.genre=proceeding&rft_id=info:doi/10.1609/aaai.v36i9.21192&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35864]