Show simple item record

dc.contributor.author
Bedarf, Patrick
dc.contributor.author
Calvo-Barentin, Cristian
dc.contributor.author
Martinez Schulte, Dinorah
dc.contributor.author
Senol Güngör, Ayca
dc.contributor.author
Jeoffroy, Etienne
dc.contributor.author
Dillenburger, Benjamin
dc.date.accessioned
2023-06-20T14:05:47Z
dc.date.available
2023-02-13T09:15:25Z
dc.date.available
2023-02-13T10:33:30Z
dc.date.available
2023-06-20T14:05:47Z
dc.date.issued
2023-06
dc.identifier.issn
2730-9894
dc.identifier.issn
2730-9886
dc.identifier.other
10.1007/s44150-023-00084-x
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/598108
dc.identifier.doi
10.3929/ethz-b-000598108
dc.description.abstract
Optimizing the shape of concrete construction elements is significant in reducing their material consumption and totalweight while improving their functional performance. However, the resulting non-standard geometries are difficult andwasteful to fabricate with conventional formwork strategies. This paper presents the novel fabrication method of mineralfoam 3D printing (F3DP) of bespoke lost formwork for non-standard, material-efficient, lightweight concrete elements. Manyinnovative formwork studies have shown that stay-in-place formwork can help to reduce waste and material consumptionwhile adding functionality to building components. Foams are particularly suitable for this application because of their highstrength-to-weight ratio, thermal resistance, and good machinability. F3DP allows the waste-free production of geometricallycomplex formwork elements without long lead times and production-specific tooling. This paper presents the materialsystem and robotic F3DP setup with two experimental case studies: a perforated facade panel and an arched beam slab. Bothcases use concrete as structural material and strategically placed custom-printed foam elements. In this first preliminarystudy, concrete savings of up to 50% and weight reduction of more than 60% could be achieved. This is competitive withstandardized solutions such as hollow-core slabs but, in contrast, allows also for non-standard element geometries. Additionalfunctionality, such as programmed perforation, acoustic absorption, and thermal insulation, could be added through thestay-in-place formwork. Moreover, the challenges and future developments of F3DP for sustainable building processes arediscussed. Further studies are required to verify the findings. However, considering the urgent need for resource-efficient,low embodied-carbon solutions in the construction industry, this work is an important contribution to the next generation ofhigh-performance building components.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Robotic 3D printing
en_US
dc.subject
Mineral foams
en_US
dc.subject
Stay-in-place formwork
en_US
dc.subject
Sustainable construction
en_US
dc.subject
Digital fabrication with concrete
en_US
dc.subject
Circular construction
en_US
dc.subject
Materials science
en_US
dc.subject
3d printing
en_US
dc.title
Mineral composites: stay-in-place formwork for concrete using foam 3D printing
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-02-11
ethz.journal.title
Architecture, Structures and Construction
ethz.journal.volume
3
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
Archit. Struct. Constr.
ethz.pages.start
251
en_US
ethz.pages.end
262
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
3D printing of functional graded inorganic foam
en_US
ethz.grant
Digital Fabrication - Advanced Building Processes in Architecture
en_US
ethz.publication.place
Cham
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02602 - Inst. f. Technologie in der Architektur / Institute for Technology in Architecture::09566 - Dillenburger, Benjamin / Dillenburger, Benjamin
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02284 - NFS Digitale Fabrikation / NCCR Digital Fabrication
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02602 - Inst. f. Technologie in der Architektur / Institute for Technology in Architecture::09566 - Dillenburger, Benjamin / Dillenburger, Benjamin
en_US
ethz.grant.agreementno
ETH-01 19-2
ethz.grant.agreementno
141853
ethz.grant.fundername
ETHZ
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100003006
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
ETH Grants
ethz.grant.program
NCCR (NFS)
ethz.date.deposited
2023-02-13T09:15:25Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-06-20T14:05:48Z
ethz.rosetta.lastUpdated
2024-02-03T00:17:50Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Mineral%20composites:%20stay-in-place%20formwork%20for%20concrete%20using%20foam%203D%20printing&rft.jtitle=Architecture,%20Structures%20and%20Construction&rft.date=2023-06&rft.volume=3&rft.issue=2&rft.spage=251&rft.epage=262&rft.issn=2730-9894&2730-9886&rft.au=Bedarf,%20Patrick&Calvo-Barentin,%20Cristian&Martinez%20Schulte,%20Dinorah&Senol%20G%C3%BCng%C3%B6r,%20Ayca&Jeoffroy,%20Etienne&rft.genre=article&rft_id=info:doi/10.1007/s44150-023-00084-x&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record