Mineral Texture Classification Using Deep Convolutional Neural Networks: An Application to Zircons From Porphyry Copper Deposits
dc.contributor.author
Nathwani, Chetan L.
dc.contributor.author
Wilkinson, Jamie J.
dc.contributor.author
Brownscombe, William
dc.contributor.author
John, Cédric M.
dc.date.accessioned
2023-03-06T11:17:52Z
dc.date.available
2023-03-05T04:07:37Z
dc.date.available
2023-03-06T11:17:52Z
dc.date.issued
2023-02
dc.identifier.issn
2169-9313
dc.identifier.issn
0148-0227
dc.identifier.issn
2169-9356
dc.identifier.other
10.1029/2022JB025933
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/601562
dc.identifier.doi
10.3929/ethz-b-000601562
dc.description.abstract
The texture and morphology of igneous zircon indicates magmatic conditions during zircon crystallization and can be used to constrain provenance. Zircons from porphyry copper deposits are typically prismatic, euhedral, and strongly oscillatory zoned which may differentiate them from zircons associated with unmineralized igneous systems. Here, cathodoluminescence images of zircons from the Quellaveco porphyry copper district, Southern Peru, were collected to compare zircon textures between the premineralization Yarabamba Batholith and the Quellaveco porphyry copper deposit. Quellaveco porphyry zircons are prismatic, euhedral, and strongly oscillatory zoned, whereas the batholith zircons are subhedral-anhedral with weaker zoning. We adopt a deep convolutional neural network (CNN) approach to demonstrate that a CNN can classify Quellaveco porphyry zircons with high success. We trial several CNN architectures to classify zircon images: LeNet-5, AlexNet and VGG, including a transfer learning approach where we used the weights of a VGG model pretrained on the ImageNet data set. The VGG model with transfer learning is the most effective approach, with accuracy and receiver operating characteristic-area under curve (ROC-AUC) scores of 0.86 and 0.93, indicating that a Quellaveco porphyry zircon CL image can be ranked higher than a batholith zircon with 93% probability. Visualizing model layer outputs demonstrates that the CNN models can recognize crystal edges, zoning, and mineral inclusions. We trial implementing trained CNN models as unsupervised feature extractors, which can empirically quantify crystal textures and morphology. Therefore, deep learning provides a tool for the extraction of information from large, imaged-based petrographic data sets which can facilitate petrologic and provenance studies.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Geophysical Union
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Mineral Texture Classification Using Deep Convolutional Neural Networks: An Application to Zircons From Porphyry Copper Deposits
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-02-01
ethz.journal.title
Journal of Geophysical Research: Solid Earth
ethz.journal.volume
128
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
J. Geophys. Res. Solid Earth
ethz.pages.start
e2022JB025933
en_US
ethz.size
19 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erd- und Planetenwissenschaften / Dep. of Earth and Planetary Sciences::02725 - Institut für Geochemie und Petrologie / Institute of Geochemistry and Petrology::09656 - Chelle-Michou, Cyril / Chelle-Michou, Cyril
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erd- und Planetenwissenschaften / Dep. of Earth and Planetary Sciences::02725 - Institut für Geochemie und Petrologie / Institute of Geochemistry and Petrology::09656 - Chelle-Michou, Cyril / Chelle-Michou, Cyril
ethz.date.deposited
2023-03-05T04:07:37Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-03-06T11:17:53Z
ethz.rosetta.lastUpdated
2024-02-02T20:44:41Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Mineral%20Texture%20Classification%20Using%20Deep%20Convolutional%20Neural%20Networks:%20An%20Application%20to%20Zircons%20From%20Porphyry%20Copper%20Deposits&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.date=2023-02&rft.volume=128&rft.issue=2&rft.spage=e2022JB025933&rft.issn=2169-9313&0148-0227&2169-9356&rft.au=Nathwani,%20Chetan%20L.&Wilkinson,%20Jamie%20J.&Brownscombe,%20William&John,%20C%C3%A9dric%20M.&rft.genre=article&rft_id=info:doi/10.1029/2022JB025933&
Files in this item
Publication type
-
Journal Article [132337]